期刊文献+

一种新的等价于大整数分解的公钥密码体制研究 被引量:1

Research on a New Public Key Cryptosystem as Secure as Integer Factorization
下载PDF
导出
摘要 在弱的安全假设下构造可证明安全的密码体制原型可以有效提高密码体制的安全性,该文对用Lucas序列构造公钥密码体制做进一步研究,给出一种新的可证明安全的密码体制原型,该密码体制的加、解密效率比现有的LUC密码体制效率高,并证明它的安全性等价于分解RSA模数,最后给出该体制在签名方面的应用,伪造签名等价于分解RSA模数。 Constructing provably secure cryptographic primitives under weak assumptions can improve the security of cryptographic schemes efficiently. Further research on the construction of public-key cryptosystem is provided, and a new public-key encryption primitive is investigated. This scheme is more efficient than that of existing LUC cryptosystems. More over, the proposed scheme is provable secure and its security is proved to be equivalent to the factorization of RSA modulus. At last, an application in signature is suggested; forgery of signature is also equivalent to the factorization of RSA modulus.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第6期1450-1452,共3页 Journal of Electronics & Information Technology
基金 中国博士后科学基金项目(20060400035) 国家自然科学基金重点项目(69931010) 国家973计划(G1999035803)资助课题
关键词 公钥加密体制 LUCAS序列 Lucas二次(非)剩余 整数分解 签名 Public-key encryption scheme Lucas sequence Lucas (non)quadratic residue Integer factorization Signature
  • 相关文献

参考文献1

共引文献1

同被引文献14

  • 1Merkle R C and Hellman M E. Hiding information and signatures in trapdoor knapsacks[J]. IEEE Transactions on Information Theory, 1978, 24(5): 525-530.
  • 2Murakami Y and Nasako T. A new trapdoor in knapsack public-key cryptosystem with two sequences as the public key[C]. The Third International Conference on Convergence and Hybrid Information Technology-ICCIT 2008, Busan, Korea 2008: 357-362.
  • 3Su P and Tsai C. New cryptosystems design based on hybrid-mode problems[J]. Computers and Electrical Engineering, 2009, 35(3): 478-484.
  • 4Hwang M, Lee C, and Tzeng S. A new knapsack public-key cryptosystem based on permutation combination algorithm[J]. International Journal of Applied Mathematics and Computer Sciences, 2009, 5(1): 33-38.
  • 5Coster M J, Joux A, and LaMacehia B A, et al.. Improved low-density subset sum algorithms[J]. Computational Complexity, 1992, 2(2): 111-128.
  • 6Lagarias J C. Knapsack public key cryptosystems and Diophantine approximation[C]. Advances in Cryptology- CRYPTO 1983, New York: Plenum, 1984: 3-23.
  • 7Nguyen P and Stern J. Merkle-Hellman revisited: a cryptanalysis of the Qu-Vanstone cryptosystem based on group factorizations[C]. Advances in Cryptology-Crypto 1997 Berlin: Springer-Verlag, 1997, LNCS 1294: 198-212.
  • 8Brickell E F and Odlyzko A M. Cryptanalysis: A survey of recent results[C]. Contemporary Cryptology, The Science of Information Integrity, New York, IEEE Press, 1992: 501-540.
  • 9Nasako T, Murakami Y, and Kasahara M. Security of a class of knapsack publlc-key cryptosystems against low-density attack[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2008, E91-A(10): 2889-2892.
  • 10Youssef A M. Cryptanalysis of a knapsack-based probabilistic encryption scheme[J]. Information Sciences, 2009, 179(18): 3116-3121.

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部