期刊文献+

融合边缘和角点特征的实时车辆检测技术 被引量:6

Real-time Vehicle Detection Using Edge and Corner Feature
下载PDF
导出
摘要 采用一种快速角点提取方法来提取角点特征,克服阴影干扰,并与边缘特征融合实现车辆检测.提出一种加入噪声自适应求取边缘二值化阈值的方法,有效抑止不同光照条件、路面强噪声,实现强边缘提取.利用车牌和通风栅格、车辆轮廓特征,解决拥堵检测问题.根据前后帧图像特征预估车速,极大减少了误触发.采用SVM进行有、无车分类.给出夜晚检测方法.实验表明本文算法较好的解决了车辆检测,特别是拥堵时的车辆检测. A method combining features of corner and edge to detect vehicle is proposed. The detector of corner is a high-speed feature detector which can eliminate the disturbance of shadow. A new adaptive threshold obtained through adding noise into histogram of grayed edge map is to binarize edges. The new threshold extracts stronger edges and eliminates larger noise on different light condition and road surface effectively. Integrating vehicle's plate, radiator grill and outline, the proposed method to detect vehicles in congested condition is more accurate. Using the characteristics of neighboring frames to estimate the speed of a vehicle, the error rate of detection is decreased. SVM is used to class image frame into two classes. The paper also gives how to detect vehicle at night. Experimental results are given to demonstrate that the proposed techniques are effective and efficient for vehicle detection especially on congested road.
出处 《小型微型计算机系统》 CSCD 北大核心 2008年第6期1142-1148,共7页 Journal of Chinese Computer Systems
关键词 角点 边缘 车辆检测 自适应阈值 拥堵路况 corner,edge,vehicle detection,adaptive threshold,congested road
  • 相关文献

参考文献22

  • 1Sun C,Rithchie S G,Tsai K.Algorithm development for derivation of section-related measures of traffic system performance using inductive loop detectors[R].Transportation research record,Pavement management and monitoring of traffic and pavements,1998,171-18.
  • 2Kim S W,Eun Y,Kim H,et al.Performance comparison of loop/piezo and ultrasonic sensor-based traffic detection systems for collecting individual vehicle information[C].Proceedings of 5th World Congr.,Intelligent Transport Systems,Seoul,Korea,Oct.1998.
  • 3Koerner R J,Bienhoff M G,Henderson M C.Inductive loop detector system[R].US Patent 3,943,339,1976.
  • 4AHS Lai,NHC Yung.Vehicle-type identification through automated virtual loop assignment and block-based direction-biased motion estimation[J].Intelligent Transportation Systems,IEEE Transactions on,2000,1(2):86-97.
  • 5Park S,Kim T,Kang S,et al.A novel signal processing technique for vehicle detection radar[C].IEEE MTT-S Int'l Microwave Symp.Digest,Philadelphia,Pennsylvania,2003,607-610.
  • 6Wang C,Thorpe C,Suppe A.Ladar-based detection and tracking of moving objects from a ground vehicle at high speeds[C].Proceedings IEEE Intelligent Vehicles Symp.Ohio,USA.2003,416-421.
  • 7Du J,Barth M.Establishing dynamic virtual roadway loop detectors with lane-level vehicle trajectory data[C].Proceedings of Intelligent Transportation Systems,San Francisco,USA,2005,38-43.
  • 8Shaoman Z,Yizhi S,Bingji L,et al.Method for vehicle speed detection based on virtual loop motion estimation[J].Huazhong University of Science and Technology Nature,2004,32(1):76-78.
  • 9Harris C,Stephens M.A combined corner and edge detector[C].Proceedings of the Fourth Alvey Vision Conference,Manchester,1988,147-151.
  • 10Smith S M,Brady M.SUSAN-a new approach to low level image processing[J].International Journal of Computer Vision,1997,23(1):45-78.

同被引文献59

  • 1张玲,叶海炳,何伟.一种基于边缘信息的改进车辆检测方法[J].重庆大学学报(自然科学版),2004,27(11):56-58. 被引量:10
  • 2刘勃,周荷琴,魏铭旭.基于颜色和运动信息的夜间车辆检测方法[J].中国图象图形学报(A辑),2005,10(2):187-191. 被引量:32
  • 3[2]Li Li,Jingyan Song,Fei-Yue Wang,etc.,New Development and Research Trends for Intelligent Vehicles[J].IEEE Intelligent Systems,2005,20(4):10-14.
  • 4[3]DICKMANNS E.The development of machine vision for road vehicles in the last decade[C].Proc.IEEE Intelligent Vehicle Symp,2002:268-281.
  • 5[4]BERTOZZI M,BROGGI A,CELLARIO M,et al.Artificial vision in road vehicles[C].Proc.IEEE,2002,90(7):1258-1271.
  • 6[5]SUN Z H,BEBIS G,MIL ER R.On-road vehicle detection:a review[J].PAMI,2006,28(5):694-711.
  • 7[6]Yixin Chen,Manohar Das,Devendra Bajpai.Vehicle Tracking and Distance Estimation Based on Multiple Image Features[C].Fourth Canadian Conference on Computer and Robot Vision,2007,5:371-378.
  • 8[7]Hoffman C,Dang T,Stiller C.Vehicle detection fusing 2D visual features[A].In:IEEE Proceedings of Intelligent Vehicles Symposium[C].Parma,Italy,2004:280-285.
  • 9[9]Wang Jun-xian,Bebis G,Miller R.Overtaking vehicle detection using dynamic and quasistatic background modeling[A].In:IEEE Computer Society Conference on Computer Vision and Pattern Recognition[C],San Diego,California,America,2005,3:64-71.
  • 10[10]SchmidM.An approach to model based 3-D recognition of vehicles in real time by machine vision[A].In:Proceedings of the IEEE /RSJ /GI International Conference on Intelligent Robots and Systems'94.'Advanced Robotic Systems and the RealWorld',IROS'94[C],Munich,Germany,1994,3:2064-2071.

引证文献6

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部