期刊文献+

基于粗糙集与支持向量机的分类算法 被引量:8

Classification Algorithm Based on Rough Set and Support Vector
下载PDF
导出
摘要 针对高维大样本环境下支持向量机训练算法面临的耗时增大与维数灾问题,将序列最小优化算法(SMO)与粗糙集(RS)的数据处理功能相结合,提出一种新的基于粗糙集与支持向量机的分类算法RS-SMO.该算法依据属性的重要性对数据集作属性约简,用粗糙边界集法生成类边界集作为SMO的训练子集,使训练集比原始训练集的维数与规模都有一定程度的减少,可构造出具有较好时空性能的算法.实验结果表明,RS-SMO算法能实现结构风险最小化,且性能优于SMO算法. When training the high-dimension and large-sample objectives,the support vector machine(SVM) may encounter the curse of dimensionality and may result in large time cost.In order to solve these problems,this paper presents a novel classification algorithm based on rough set and support vector machine(RS-SMO) by combining the sequence minimizing optimization(SMO) algorithm with the data processing function of a rough set.In this algorithm,data sets are attribute-reduced according to the attribute significance,and some class boundary sets are formed by using rough boundary set as the training subsets of SMO algorithm.Thus,the dimension and scale of the training set become less than both of the original sets,which helps to improve the time-space performance of the algorithm.Experimental results indicate that the proposed RS-SMO algorithm minimizes the structural risk and is superior to the SMO algorithm in its performance.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第5期123-127,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(30570458)
关键词 粗糙集 支持向量机 分解算法 属性约简 边界集 时空性能 rough set support vector machine decomposing algorithm attribute reduction boundary set time-space performance
  • 相关文献

参考文献10

  • 1Vapnik V. The nature of statistical learning theory [ M ]. Berlin : Springer-Verlag, 1995.
  • 2Platt J. Sequential minimal optimization:a fast algorithm for training support vector machines [ R ]. Redmond, WA: Microsoft Research, 1998.
  • 3Mattera D, Palmieri F, Haykin S. An explicit algorithm for training support vector machines [ J]. Signal Processing Letters, 1999,9 ( 6 ) : 243- 245.
  • 4Lipowski J, Jankowski S. Accelerating SMO algorithm on parallel architectures [ J ]. Proc of SPIE, 2006, 6159 : 61592Y-1-61592Y-9.
  • 5徐袭,姚琼荟,石敏.基于粗糙集与支持向量机的故障智能分类方法[J].计算技术与自动化,2006,25(1):32-34. 被引量:8
  • 6Zhang Guo-yun, Zhang Jing. A hybrid RS-SVM dynamic prediction approach to rotary kiln sintering process [ C ]// Proceedings of 2004 International Conference on Machine Learning and Cybernetics. Hangzhou, China : IEEE, 2004 :1478-1482.
  • 7张国宣,孔锐,施泽生,郭立.一种新的基于聚类的SVM迭代算法[J].仪器仪表学报,2004,25(z1):613-614. 被引量:2
  • 8邓乃扬,田英杰.数据挖掘中的新方法——支持向量机[M].北京:科学出版社,2006:328-355.
  • 9邓九英,毛宗源,徐宁.基于粗糙集属性变分区的属性约简[J].华南理工大学学报(自然科学版),2006,34(9):50-55. 被引量:7
  • 10Asuncion Arthur, Newman David. The UCI machine learning repository [ EB/OL ]. [ 2007-06-10 ]. http :// archive, ics. uci. edu/ml/machine-learning-databases/.

二级参考文献30

  • 1于达仁,胡清华,鲍文.融合粗糙集和模糊聚类的连续数据知识发现[J].中国电机工程学报,2004,24(6):205-210. 被引量:70
  • 2[1]边肇祺,张学工等.模式识别.北京:清华大学出版社,1999.
  • 3[1]Vapnik,张学工译.统计学习理论的本质.北京:清华大学出版社,2000.
  • 4[3]R. Bennett E. J. Bredensteiner. Geometry in learning.Dept. Math. Sci. , Rennselaer Polytechnic Inst. , Troy,NY, Tech. Rep. , 1996.
  • 5[4]Murphey. Y. L. ,Zhil Hang Chen, Putrus. M. ,etal..SVM learning from large training data set. Proceedings of the International Joint Conference on Neural Networks, 2003,4: 2860~2865.
  • 6VNVapnik著 张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 7Z.Pawlak,Rough set[J].Int J.of Computer and Information Science,vol.11,pp.341~356,1982.
  • 8Bezdek J C.Pattern recognition with fuzzy objective function algorithms[M].New York:Plenum Press,1981.
  • 9K.Pelckmans,J.A.K.Suykens,T.Van Gestel.etc,LSSVMlab Toolbox User's Guide,ESAT-SCD-SISTA Technical Report 02-145,February 2003.
  • 10Pawlak Z,Grzymada-Busse J,Slowinski R,et al.Rough sets[J].Communications of ACM,1995,38(11):89-95.

共引文献14

同被引文献75

引证文献8

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部