期刊文献+

自适应脉冲耦合神经网络在图像处理中应用 被引量:5

Study on Self-adaptive Pulse Coupled Neural Network and Its Application in Fields of Image Processing
下载PDF
导出
摘要 尽管Johnson提出的PCNN模型具有强大的图像处理功能,以时间序列进行特征提取时具有旋转、尺度、平移、扭曲不变性,可实践中发现依然存在着不足,特别对图像亮度、对比度比较敏感。添加了误差反向传播(Error Back Propagation,EBP)学习准则的自适应脉冲耦合神经网络模型能自适应设定模型参数,是脉冲耦合神经网络模型研究的主要内容。特别地,应用这种自适应模型进行特征提取时,能弥补原来PCNN模型对亮度、对比度敏感的缺陷,而且具有一定的泛化能力,有效克服了亮度、对比度对图像识别精度的影响。 The standard Pulse Coupled Neural Networks (PCNN) has been widely used in the image processing, however, it is hard to set plenty parameters of PCNN efficiently which limited its capability for image processing. Based on the learning rules, PCNN was optimized through running its parameters adaptively. A gradient descent algorithm was adopted to search parameters which could reduce the error between the desired output and the actual output gradually according to the least mean square principle. The traditional PCNN model is used to image feature extraction, its output features are rotation, scale and shift invariant, but it is sensitive to illumination, therefore the adaptive parameters PCNN is used for image feature extraction when the stimuli's illumination (intensity or contrast) is varied. The results are shown that the application efficiency of feature extraction is improved.
出处 《系统仿真学报》 CAS CSCD 北大核心 2008年第11期2897-2900,2930,共5页 Journal of System Simulation
基金 国家自然科学基金(60572011) 甘肃省自然科学基金(0710RJZA015)
关键词 自适应 脉冲耦合神经网络 学习准则 时间序列 self-adaptive pulse-coupled neural network learning rules time series
  • 相关文献

参考文献14

  • 1J L Johnson, M L Padgett. PCNN Models and Applications [J]. IEEE Trans on Neural Networks (S1045-9227), 1999, 10(3): 480-498.
  • 2J M Kinser. A Simplified Pulse-Coupled Neural Network[J]. SPIE (S0277-786X), 1996, (2760): 563-567.
  • 3G Kuntimad, H S Ranganath. Perfect Image Segmentation Using Pulse Coupled Neural Networks [J]. IEEE Trans. Neural Networks (S1045-9227), 1999, 10(3): 591-598.
  • 4H S Ranganath, G Kuntimad. Iterative segmentation using Pulse Coupled Neural Networks [J]. SPIE (S0277-786X), 1996, (2760): 543-554.
  • 5马义德,戴若兰,李廉.一种基于脉冲耦合神经网络和图像熵的自动图像分割方法[J].通信学报,2002,23(1):46-51. 被引量:145
  • 6马义德,齐春亮.基于遗传算法的脉冲耦合神经网络自动系统的研究[J].系统仿真学报,2006,18(3):722-725. 被引量:50
  • 7Randy Paul Broussard. Physiologically based Vision Modeling applications and Gradient Decent based Parameter Adaptation of Pulse Coupled Neural Networks [J]. Air Farce Institute of Technology, AFIT/DSG/ENG/96-3M, 1997: 69-80.
  • 8J L Johnson. Pulse-Coupled Neural Nets: Translation, Rotation, Scale, Distortion, and Intensity Signal Invariance for Images [J]. Applied Optics. (S0003-6935), 1994, 33(26): 6239-6253.
  • 9John J L, Ritter D. Observation of periodic waves in a Pulse-coupled neural network [J]. Opt. Lett. (S0146-9592), 1993, 18(15): 1253-1255.
  • 10Lzhikevich Eugene M. Theoretical foundations of pulse-coupled models [C]// Proceedings of the 1998 IEEE International Joint Conference on Neural Networks. Part 3: IEEE World Congress on Computational Intelligence. May 4-9 1998, Anchorage, AK, USA. USA: IEEE, 1998, v3: 2547-2550.

二级参考文献13

  • 1Rechenberg I. Cybemetic solution path of an experimental problem[J]. Roy Airer Establ, libr trans 1222 Hants, UK;Tamborough,1985.
  • 2Schwefel H. P_Numerical optiization of computer model[M].Chichester; Wiley, 1981.
  • 3J L Johnson, M L Padgett. PCNN Models and Applications[J]. IEEE Trans. on Neural Networks(S 1045-9227), 1999, 10(3):480-498.
  • 4J M Kinser. Recent Research in Pulse-Coupled Neural Networks[J].SPIE Areosense conf. (S0277-786X), Orlan, FL, 1996.
  • 5G.Kuntimad, H. S. Ranganath. Perfect Image Segmentation Using Pulse Coupled Neural Networks[J]. IEEE Trans. Neural Networks(S 1045-9227), 1999,10(3):591-598.
  • 6H S Ranganath, G.Kuntimad. Iterative segmentation using Pulse Coupled Neural Networks[J]. SPIE (S0277-786X), 2760: 543-554.
  • 7Mary Lou Padgett, John L.Johnson. Pulse Coupled Neural Networks and Wavelet [J]. IEEE Trans on Neural Networks(S 1045-9227), 1997:2507-2512.
  • 8Xiao-Dong Gu, Shi-De Guo, Dao-Heng Yu. A new approach for image segmentation based on unit-linking PCNN[C]// Machine Learning and Cybernetics, Proceedings 2002 International Conference, 2002, 1: 175- 178. (会议名为:The First Intemat. Conf.of Machine learning and Cybernetics)
  • 9Kohler R A. Segmentation system based on thresholding[J].Computer vision, graphics and image processing(S0734-189X), 1981,15(6): 319-324.
  • 10汪天富,郑昌琼,李德玉,郑翊.基于自组织神经网络的超声心脏图象分割[J].中国生物医学工程学报,2000,19(3):356-358. 被引量:8

共引文献173

同被引文献51

引证文献5

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部