期刊文献+

计算自旋-s算子幺正演化矩阵d^s(t)的新方法及其应用 被引量:1

A new method of calculating the unitary evolution matrix d^s(t) of the spin-s operators and its applications
原文传递
导出
摘要 提出了一种严格求解任意自旋-s算子幺正演化矩阵的方法,该方法不同于群论的方法和直接计算的方法,是一种间接的算法.方法的核心是利用两个系统表示的等价性:即自旋-s算子Hamiltonian量Hs=Sx与Heisenberg XX开链带相互作用Jn=(n(N-n))^(1/2)的Hamiltonian量的等价性,由于存在这种等价性,自旋-s算子幺正演化矩阵的计算可通过Heisenberg XX开链中态的演化来实现.采用该方法计算了s=3/2,s=2和s=5/2时对应的幺正演化矩阵.由于初始态|sm〉在算子e-itSx下的演化实质上相当于对态|sm〉进行一个绕x轴转角为β=t的转动,演化矩阵元dsm’m(t)=〈sm′|e-it|Sxsm〉就是转动后的态e-it|Sxsm〉在|sm′〉态上的投影值,所以在t=π时刻的演化矩阵刚好对应Heisenberg XX开链上量子态的理想传输. We propose a method for calculating the unitary evolution matrix of the arbitrary spin-s operators rigorously. This is an indirect method, which differs from the method of group theory or the method of direct calculation. The kernel of our method is to use the identity of two systems in their expressions, namely the Hamiltonian Hs=Sx of spin-s particle and the Hamiltonian of the Heisenberg XX open chain with interaction Jn=(n(N-n)). Because of this identity, the calculation of the unitary evolution matrix of the spin-s operators is substituted by the calculation of the state evolution matrix in Heisenberg XX open chain. As examples, the unitary evolution matrix of s=3/2, s=2 and s=5/2 are calculated by using our method. Since the evolution of the state |sm〉 under the operator e-itSx corresponds to the rotation of the initial state |sm〉 around the x-axis by an angle β=t, and the evolution matrix element dsm′m(t)=〈sm′|e-it|Sxsm〉 is just the projection of the finial state e-itSx|sm〉 on the initial state |sm′〉, the evolution matrix at t=π corresponds the perfect transmission of quantum state in the Heisenberg XX open chain.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第6期3319-3323,共5页 Acta Physica Sinica
基金 国家自然科学基金(批准号:10547008)资助的课题~~
关键词 自旋-s算子 幺正演化矩阵 量子态传输 spin-s operator, unitary evolution matrix, transfer of quantum state
  • 相关文献

参考文献13

  • 1Christandl M,Datta N,Ekert A,Landahl A J 2004 Phys.Rev.Lett.92 187902
  • 2Imamoglu A,Awschalom D D,Burkard G,DiVincenzo D P,Loss D,Sherwin M,Small A 1999 Phys.Rev.Lett.83 4204
  • 3Wang X G 2001 Phys.Rev.A 64 012313
  • 4Haldane F D M 1983 Phys.Rev.Lett.50 1153
  • 5Mona R M,Buyers W J L,Armstrong R L,Hirakawa K 1988 Phys.Rev.B 38 543
  • 6Granroth G E,Meisel M W,Chaparala M,Jolicoeur T,Ward B H,Talham D R 1996 Phys.Rev.Lett.77 1616
  • 7Jiang Q,Cao H,Li Z 1996 Phys.Lett.A 221 445
  • 8Wang X,Qin S,Yu L 1999 Phys.Rev.B 60 14529
  • 9Xi X Q,Liu W M 2007 Chin.Phys.16 1858
  • 10惠小强,陈文学,刘起,岳瑞宏.量子位Heisenberg XX开链中边界量子位之间的纠缠[J].物理学报,2006,55(6):3026-3031. 被引量:13

二级参考文献18

  • 1张涛,惠小强,岳瑞宏.三量子位Heisenberg XX链中杂质对纠缠的影响[J].物理学报,2004,53(8):2755-2760. 被引量:8
  • 2[1]Liu Y,Yao C M, Guo G C 2001 Chin. Phys. 10 1001
  • 3[2]Zheng Y Z,Gu Y J,Guo G C 2002 Chin. Phys. 11537
  • 4[3]Cai X H 2003 Chin. Phys. 12 1066
  • 5[4]Mattle K et al 1996 Phys. Rev. Lett. 76 4656
  • 6[5]Calsamiglia J, Lutkenhaus N 2001 Appl. Phys. B 72 67
  • 7[6]Kim Y H, Kulik S P, Shih Y 2001 Phys. Rev. Lett. 86 1370
  • 8[8]Hao S R,Hou B Y,Xi X Q et al 2002 Chin. Phys. 11109
  • 9[9]Chen L B 2002 Chin. Phys. 11 881
  • 10[11]Arnesen M C, Bose S, Vedral V 2001 Phys. Rev. Lett. 87 17901

共引文献29

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部