期刊文献+

轴对称黑洞的量子统计熵 被引量:4

Quantum statistical entropy of axisymmetric black hole
原文传递
导出
摘要 避开了求解黑洞背景下波动方程的因难,应用量子统计方法,通过应用在量子引力中、由广义测不准关系得出的新态密度方程,直接求解轴对称Kerr黑洞背景下玻色场和费米场的配分函数.然后,在视界附近计算黑洞背景下玻色场和费米场的熵.得到用收敛级数表达的黑洞熵.在计算中不存在用brick wall模型计算黑洞熵时出现的发散项和小质量近似,使人们对非球对称时空中黑洞的统计熵有更深入的认识. Using the quantum statistical method, the difficulty of solving wave equation on the background of the black hole is avoided. We directly solve the partition functions of bosonic field and fermionic field on the background of the axisymmetric Kerr black hole through using the new equation of state density motivated by the generalized uncertainty relation in the quantum gravity theory. Then the entropy of the bosonic field and fermionic field near the horizon of the black hole are calculated. In our results the divergence appearing in the brick wall model is removed, as well as without using the small mass approximation. The series expression of the statistical entropy of the black hole is convergent. Therefore, it gives a better understanding of the black hole statistical entropy in non-spherical symmetry spacetimes.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第6期3328-3332,共5页 Acta Physica Sinica
基金 山西省自然科学基金(批准号:2006011012)资助的课题~~
关键词 量子统计 非球对称时空 广义测不准关系 黑洞熵 quantum statistics, non-spherical symmetry spacetimes, generalized uncertainty relation, black hole entropy
  • 相关文献

参考文献39

  • 1Bekenstein J D 1973 Phys.Rev.D 7 2333
  • 2Bekenstein J D 1974 Phys.Rev.D 9 3292
  • 3Hawking S W 1974 Nature 248 30 Hawking S W 1975 Commun.Math.Phys.43 199
  • 4Bombelli L,Rabinder K K,Joohan L,Rafael D S 1986 Phys.Rev.D 34 373
  • 5Frolov V P,Fursaev D V 1996 Phys.Rev.D 61 3904
  • 6Callan C G,Wilczek F 1994 Phys.Lett.B 333 55
  • 7Zurek W H,Thorne K S 1985 Phys.Rev.Lett.54 2171
  • 8G't Hooft 1985 Nucl.Phys.B 256 727
  • 9Ghosh A,Mitra P 1994 Phys.Rev.Lett.73 2521
  • 10Mann R B,Solodukhin S N 1996 Phys.Rev.D 54 3932

二级参考文献70

共引文献20

同被引文献26

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部