期刊文献+

TD-ERCS离散混沌伪随机序列的复杂性分析 被引量:20

The complexity analysis of TD-ERCS discrete chaotic pseudo-random sequences
原文传递
导出
摘要 采用相空间直接观察法和行为复杂性算法,系统地分析了新型TD-ERCS离散混沌系统产生的伪随机序列的复杂性,得出了其复杂性变化规律.在Kolmogorov复杂性基础上,应用经典的Limpel-Ziv算法,ApEn算法和PE算法,从一维时间序列到多维相空间重构两方面计算了TD-ERCS离散混沌伪随机序列的复杂度大小.计算结果表明,TD-ERCS系统的行为复杂性高,而且该系统的复杂性大小随系统参数改变的变化范围小,是一个复杂性非常稳定的全域性离散混沌系统,其产生的混沌伪随机序列适合于信息加密或扩频通信. By observing the phase diagram and using the behavior complexity algorithm, the complexity of chaotic pseudo-random sequences generated by the new TD-ERCS discrete chaotic system is analyzed in detail, and the rules of complexity variety are investigated. Based on the Kolmogorov complexity, from one-dimensional time series to multidimensional phase space restructure, the complexity values of TD-ERCS discrete chaotic pseudo-sequences are calculated by using the Limpel-Ziv algorithm, ApEn algorithm and PE algorithm, respectively. The results show that the behavior complexity of TD-ERCS system is high, and the complexity value changes a little with the change of the parameters of TD-ERCS system. TD-ERCS system is a discrete chaotic system with the steady complexity, and the pseudo-random sequences generated by TD-ERCS are suitable for use in information encryption and spread spectrum communications.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第6期3359-3366,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60672041)资助的课题~~
关键词 混沌 混沌伪随机序列 TD-ERCS系统 复杂度 chaos, chaotic pseudo-random sequence, TD-ERCS system, complexity
  • 相关文献

参考文献12

二级参考文献50

  • 1谢惠民.动力系统的复杂性刻划[J].力学进展,1996,26(3):289-305. 被引量:10
  • 2徐京华,童勤业,刘仁.大脑皮层信息传输和精神分裂症[J].生物物理学报,1996,12(1):103-108. 被引量:22
  • 3刘剑波 叶春飞 张树京.物理学报,1999,49:20-20.
  • 4R. Wackerbauer, et al., A comparative classification of complexity measures, Chaos, Solitons & Fractals, 1994, 4(1), 133-173.
  • 5M. di Bernardo, Franco Garofalo, Luigi Glielmo, Switchings, bifurcations, and chaos in dc-dc converters, IEEE Trans. on Circuits Syst.I, 1998, 45(2), 133-141.
  • 6E. Fossas, G. Olivar, Study of chaos in the buck converter, IEEE Trans. on Circuits Syst.I, 1996,43(1), 13-25.
  • 7J. H. B. Deane, D. C. Hamill, Analysis, simulation and experimental study of chaos in the Buck converter, Proc. IEEE. PESC, San Autonio, Texas, 1990, 491-498.
  • 8J. H. B. Deane, D. C. Hamill, Chaotic behavior in current-mode controlled dc-dc converter,Electron. Lett., 1991, 27(13), 1172-1173.
  • 9D. C. Hamill, J. H. B. Deane, Modeling of chaotic DC-DC converters by iterated nonlinear mappings, IEEE Trans. on Power Electron., 1992, 7(1), 25-36 .
  • 10C.J.Budd,A.G.Lee,Double impact orbits of a single-degree-of-freedom impact oscillators subject to periodic forcing of odd flrequency,Proc.Royal Soc.of London Ser.A--Mathematical,Physical and Engineering Science,1996,452(1955),2719—2750.

共引文献146

同被引文献141

引证文献20

二级引证文献161

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部