期刊文献+

一类二阶非线性脉冲时滞微分方程的振动性

Oscillations of Certain Second-order Nonlinear Delay Differential Equations with Impulses
原文传递
导出
摘要 研究了一类二阶非线性脉冲时滞微分方程的振动性,分别运用引入参数函数和Lakshmikantham等人建立的脉冲微分不等式,得到了几个充分性判据,并改进了一些已知结果. The oscillation of second-order nonlinear delay differential eqution with impulses was investigated by means of introducing parameter function and using impulsive differential inequalities established by Lakshmikantham ect. Several oscillation criteria were established..In particular, our work generalizes some known results.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第12期172-177,共6页 Mathematics in Practice and Theory
关键词 振动性 二阶非线性微分方程 脉冲 时滞 oscillation second-order nonlinear differential equation impulses delay
  • 相关文献

参考文献9

二级参考文献27

  • 1申建华,庾建设.具有脉冲扰动的非线性时滞微分方程[J].应用数学,1996,9(3):272-277. 被引量:32
  • 2Gyori I., Ladas G., Oscillation Theory of Delay Differential Equations with Applications, Oxford: Clarendon Press, 1991.
  • 3Lakshmikantham V., Bainov D. D., Simeonov P. S., Theory of Impulsive Differential Equations, Singapore: World Scientific, 1989.
  • 4Berezansky L., Braverman E., Some oscillation problems for a second order linear delay differenrial equatiuon, J. Math. Anal. Appl., 1998, 220: 719-740.
  • 5Shen J. H., Global existence and uniqueness, oscillation and nonoscillation of impulsive delay differential equations, Acta Mathematica Sinios, 1997, 40(1): 53-59 (in Chinese).
  • 6Berezansky L., Braverman E., On oscillation of a second order impulsive delay differential equatiuon, J. Math. Anal. Appl., 1999, 233: 276-300.
  • 7Peng M. S., A comparison theorem of second-order impulsive delay differential equations, Journal of Beijing Normal University (Natural Ed.), 2000, 36(1): 746-747 (in Chinese).
  • 8Peng M. S., Ge W. G., Oscillation criteria for second order nonlinear delay differential equations with impulses, Computers Math. Applic., 2000, 39(5/6): 217-225.
  • 9Peng M. S., Oscillation caused by impulses, J. Math. Anal. Appl., 2001, 255(1): 163-176.
  • 10Peng M. S., Ge W. G., Xu Q. L., Preservation of nonoscillatory behavior of solutions of second-order differntial equations under impulsive perturbations, Appl. Math. Letters, 2002, 15(2): 203-210.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部