期刊文献+

具有离散时滞的非自治扩散模型的周期解 被引量:3

Periodic Solution of a Nonautonomous Diffusive Model with Discrete Delays
原文传递
导出
摘要 考虑具有离散时滞及周期系数的非自治的两种群竞争扩散摸型,利用微分不等式等获得了其一致持续生存的条件,通过构造李亚普诺夫泛函获得了其正周期解存在与全局渐近稳定的充分条件. A nonautonomous Two-species competition diffusive model with discrete delays is studied In this paper. It is shown that model is uniform persistence under some appropriate conditions, sufficient conditions are established the existence of a positive periodic solution which is global asymptotic stability by differential inequality and lyapunov functional.
作者 梁建秀
出处 《数学的实践与认识》 CSCD 北大核心 2008年第12期216-220,共5页 Mathematics in Practice and Theory
关键词 时滞 扩散 一致持续生存 正周期解 全局渐近稳定 delay diffusion uniform persistence periodic solution global stable
  • 相关文献

参考文献5

  • 1Yang Kuang. Delay Differential Equation with Application in Dynamics[M]. San diego CA: Academic press INC, 1993. 263-271.
  • 2Jingru Zhang, Lansun Chen. Xiu Dong Chen. Persistence and global stability for two-species nonautonomous competition Lotka-Volterra patch-system with time delay[J]. Nonlinear Analysis ,1999, (37): 1019-1028.
  • 3桂占吉.具有周期系数和连续时滞的扩散模型的周期解[J].生物数学学报,1999,14(1):43-49. 被引量:10
  • 4Yang Pinghua, Xu Rui, Feng Hanying. Global asymptotic stability of periodic solution in N-species competition system with time delays[J]. Nnnof Diff Eqs,1999,(14):375-383.
  • 5Yang Kuang. Delay Differential Equation with Application in Dynamics[M]. San Diego CA: Academic Press INC, 1993.27-46.

二级参考文献6

  • 1罗茂才,马知恩.具有分离扩散的两种群Lotka-Volterra模型的持久性[J].生物数学学报,1997,12(1):52-59. 被引量:7
  • 2陈兰荪 陈键.非线性生物动力系统[M].北京:科学出版社,1988..
  • 3Cao Feng,Syst Sci Math Sci,1998年,11卷,2期,107页
  • 4罗茂才,生物数学学报,1997年,12卷,52页
  • 5Yang Kuang,Math Biosci,1994年,120卷,77页
  • 6陈兰荪,非线性生物动力学系统,1993年

共引文献9

同被引文献7

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部