期刊文献+

救灾物资发放问题的动态遗传算法求解 被引量:13

Dynamic genetic algorithm for problems of distributing goods to disaster areas
下载PDF
导出
摘要 与传统启发式优化搜索算法相比,遗传算法的主要本质特征在于利用了群体搜索策略和简单的遗传算子.群体搜索使遗传算法得以突破邻域搜索的限制,可以实现整个解空间上的分布式信息探索、采集和继承.这篇文章针对救灾物资发放问题进行了研究,建立了此类问题的数学模型,在分析标准遗传算法的基础上,采用设置摆动适应度函数与条件交叉、变异概率的方式设计了动态遗传算法,并通过求解实际问题对标准遗传算法与设计的动态遗传算法计算结果进行了对比.结果表明该算法在一定程度上动态解决了群体由于缺乏多样性而陷入局部解的问题,能够更大概率地得到最优解,可以说是对遗传算法改进方面的一个尝试,结论对于解决类似问题具有较大的参考价值. Compared with conventional searching arithmetic, the primary characterof GA is the colonial searching resource and the simple GA operator. Colonial searching breaches the restriction of neighborhood searching. And it can realize exploring, collection, and inheritng. In this paper, we discuss the problem of distributing goods to disaster areas, and establish the optimizing model. On the basis of analyses of standard GA, we design an advanced GA by using pendular fitness function and conditional dominate parameters. We compare dynamic GA with standard GA by making some experiments by Matlab. The result demonstrates that our method can solve the problem of partial convergence, and can give the best result by bigger probability.
出处 《管理科学学报》 CSSCI 北大核心 2008年第3期29-34,共6页 Journal of Management Sciences in China
基金 国家自然科学基金资助项目(60673056)
关键词 动态遗传算法 摆动适应度函数 条件参数 dynamic genetic algorithm (DGA) pendular fitness function conditioned parameter
  • 相关文献

参考文献11

二级参考文献45

  • 1周明 孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1996..
  • 2Farrell M J. The measurement of productive efficiency[J]. Journal of the Royal Statistical Society(series A), 1957, (3): 253-281.
  • 3Charnes A, Cooper W W, Rhodes E. Measuring the efficiency of decision making units[J]. European Journal of Operational Research, 1978, (2): 429-444.
  • 4Aigner D J, Chu D S. On the industry production function[J]. American Economic Review, 1968, 58: 826-839.
  • 5Meeusen W,Van den Broeck J. Efficiency estimation from Cobb-Douglas production functions with composed error[J]. Internation Economic Review, 1977, 18: 435-444.
  • 6Greene W H.The Econometric Approach to Efficiency Analysis[M]. New York: Oxford University Press, 1993.
  • 7Lovell C A K, Kumbhakar S C. Stochastic Frontier Analysis[M]. London: Cambridge University Express, 2000.
  • 8Koza J.Genetic Programming: On the Programming of Computers by Means of Natural Selection[M]. Cambridge: MIT Press, 1992.
  • 9玄光南 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000..
  • 10Wolpert D H, Macready W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997,(1): 67-82.

共引文献116

同被引文献297

引证文献13

二级引证文献174

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部