期刊文献+

光照鲁棒的Mean Shift跟踪方法 被引量:6

Illumination robust Mean Shift tracking
下载PDF
导出
摘要 针对Mean Shift跟踪方法存在的光照不稳定问题,提出了一种光照鲁棒的Mean Shift跟踪方法。该方法采用颜色特征和局部二元模式特征(Local Binary Pattern)两种特征相结合来描述目标,其中局部二元模式特征的光照不变性使得目标模型更加鲁棒。同时,为了避免原始Mean Shift跟踪方法中bin-to-bin度量带来的不稳定性,该方法采用了一种新的cross-bin度量,该度量更好地融合了多层次的特征信息,使得光照变化下的特征匹配更加稳定。实验表明,该方法在光照变化情况下能取得比原始Mean Shift跟踪方法更好的性能。 A new illumination robust Mean Shift tracking method was proposed. This method combined color feature and local binary pattern feature to describe the target. The illumination invariant characteristic of local binary pattern made the model more robust. To avoid the unstable bin-to-bin similarity applied in the original Mean Shift tracking method, a cross-bin similarity was used to make the feature matching more stable. Experiments show that the proposed method is robust than the original Mean Shift tracking method under illumination changes.
出处 《计算机应用》 CSCD 北大核心 2008年第7期1672-1674,共3页 journal of Computer Applications
关键词 目标跟踪 Mean SHIFT 光照 局部二元模式 cross—bin度量 visual tracking Mean Shift illumination local binary pattern cross-bin similarity
  • 相关文献

参考文献7

  • 1COMANICIU D, RAMESH V, Meer P Kernel-based object tracking [ J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 2003, 25:564-577.
  • 2HAGER G D , BELHUMEUR P N . Efficient region tracking with parametric models of geometry and illumination [ J]. IEEE Transactions Pattern Analysis and Machine Intelligence, 1998, 20( 10): 1025 - 1039.
  • 3FREEDMAN D , TUREK M , Illumination - invariant tracking via graph cuts [ C]// IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego: IEEE Press, 2005, 2: 10 - 17.
  • 4OJALA T, Multi-resolution gray-scale and rotation invariant texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24 (7) : 971 - 987.
  • 5LING H B, OKADA K. Diffusion distance for histogram comparison [ C] //IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York: IEEE Press, 2006, 1:246 -253.
  • 6RUBNER Y, TOMASI C, GUIBAS L J. The earth mover's distance as a metric for image retrieval [ J]. International Journal of Computer Vision, 2000,40(2) : 99 - 121.
  • 7GRAUMAN K, DARRELL T, The pyramid match kernel: discriminative classification with sets of image features [ C]//IEEE International Conference on Computer Vision. Beijing: IEEE Press, 2005, 2:1458 - 1465.

同被引文献112

引证文献6

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部