期刊文献+

一般化学习网络及其对化学反应器的建模应用(英文) 被引量:1

Universal learning network and its application in modeling chemical reactor
原文传递
导出
摘要 本文研究了一般化学习网络(Universal Learning Network)在多变量连续釜式反应器(CSTR)系统的建模应用.一般化学习网络具有节点之间有多重分支、任意2个节点互连且节点之间可具有任意的时间延迟的特点,因此能够应用在高度非线性复杂系统的辨识中.分别用一般化学习网络和常规的递归神经网络对多变量连续釜式反应器(CSTR)进行系统辨识比较,仿真结果验证了一般化学习网络结构比递归神经网络Elman的辨识精度更高,且网络结构更简洁紧凑的特点. Universal Learning Network for modeling chemical reactor is discussed in this paper. Universal learning network consists of a number of interconnected nodes and each pair of nodes can be connected by multiple branches with arbitrary time delays. With all these structural characteristics, it provides a generalized framework to model and control highly complicated nonlinear system. Both the universal learning network and the conventional recurrent network have been used to identify the CSTR system. The simulation results verify the capability and effectiveness of universal learning network in process identification. The architecture of multi-branch with time-delay and the learning algorithm independent of the initial parameter values make it more accuracy than the recurrent network Elman in identification, and furthermore, the network structure is more simple and eompact.
作者 李大字 刘霞
出处 《计算机与应用化学》 CAS CSCD 北大核心 2008年第6期645-648,共4页 Computers and Applied Chemistry
基金 Supported by Scientific Research Starting Foundation for Returned Overseas Chinese Scholars,Ministry of Education and China and National Science Foundation of Beijing University of Chernical Technology for Young Teachers(QN0625).
关键词 递归神经网络 一般化学习网络 系统辨识 连续搅拌釜式反应器(CSTR) recurrent networks, universal learning networks, system identification, CSTR
  • 相关文献

参考文献2

二级参考文献12

  • 1[1]D.A.Clouse, C.L.Giles. Time-Delay Neural Network: Representation and Induction of Finite-State Machines, IEEE Trans. On Neurak Networks, 1997, (8)5.
  • 2[2]M.Han, K.Hirasawa, M.Ohbayashi, H.Fujita. Modeling Dynamic Systems using Universal Learning Network, Proc. of 1996 IEEE International Conference on Systems, Man and Cybernetics, 1996, 1172~1177.
  • 3[3]P. Werbos. Beyond regression: New Tools for Prediction and Analysis in the Behavior Science, Ph.D. Dissertation, Harvard University, 1974.
  • 4Octave Levenspiel.Reaction Engineering.3rd ed.New York:John Wiley & Sons,1999.
  • 5Chitra S P,Govind R.Synthesis of optimal serial reactor structures for homogeneous reactions.Part I:isothermal reactors.AIChE J,1985,31(2):177-184.
  • 6Schweiger C A,Floudas C A.Optimization framework for the synthesis of chemical reactor networks.Industrial Engineering Chemical Research,1999,38(3):744-7661.
  • 7Glasser D,Hildebrandt D,Crowe C.A geometric approach to steady flow reactors:the attainable region and optimization in concentration space.Industrial Engineering Chemical Research,1987,26(9):1801-1810.
  • 8Balakrishna S,Biegler L T.Constructive targeting approaches for the synthesis of chemical reactor networks.Industrial Engineering Chemical Research,1992,31(1):300-312.
  • 9Lakshmanan A,Biegler L T.Synthesis of optimal chemical reactor networks.Industrial Engineering Chemical Research,1996,35(4):1344-1353.
  • 10Ralph Jocobs,Wouter Jansweijer.A knowledge-based system for reactor selection.Computers & Chemical Engineering,2000,24(8):1781-1801.

共引文献3

同被引文献9

  • 1沈永俊,顾幸生.PID神经网络内模控制在湿法烟气脱硫中的应用[J].清华大学学报(自然科学版),2007,47(z2):1798-1802. 被引量:6
  • 2冯纯伯,刘延年.神经网络控制的现状及问题[J].控制理论与应用,1994,11(1):103-106. 被引量:17
  • 3赵超,张志君.混合遗传算法在CSTR中应用[J].大连理工大学学报,2006,46(3):438-441. 被引量:2
  • 4孙增圻 张再兴 邓志东.智能控制理论与应用[M].北京:清华大学出版社,1997..
  • 5Hirasawa K,Kim S,Hu J L,et al.Improvement of generalization ability for identifying dynamical systems by using universal learning networks[J].Neural Networks,2001,14(10):1389-1404.
  • 6Xiong Q Y,Hirasawa K,Hu J L,et al.A functions localized neural network with branch gates[J].Neural Networks,2003,16(10):1461-1481.
  • 7Aoyama A,Venkatasubramanian V.Internal model control framework using neural networks for the modeling and control of a bioreactor[J].Engineering Applications of Artificial Intelligence,1995,8(6):689-701.
  • 8Han M,Han B,Xi J H,et al.Universal learning network and its application for nonlinear system with long time delay[J].Computers & Chemical Engineering,2006,31(1):13-20.
  • 9熊莹,曹柳林.利用RBF神经网络实现聚合反应的内模控制[J].北京化工大学学报(自然科学版),2003,30(6):91-94. 被引量:3

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部