期刊文献+

Optical Design of Multilayer Achromatic Waveplate by Simulated Annealing Algorithm 被引量:6

Optical Design of Multilayer Achromatic Waveplate by Simulated Annealing Algorithm
下载PDF
导出
摘要 We applied a Monte Carlo method -- simulated annealing algorithm -- to carry out the design of multilayer achromatic waveplate. We present solutions for three-, six- and ten-layer achromatic waveplates. The optimized retardance settings are found to be 89°51′39″ ± 0°33′37″ and 89°54′46″ ± 0°22′4″ for the six- and ten-layer waveplates, respectively, for a wavelength range from 1000 nm to 1800 nm. The polarimetric properties of multilayer waveplates are investigated based on several numerical experiments. In contrast to previously proposed three-layer achromatic waveplate, the fast axes of the new six- and ten-layer achromatic waveplate remain at fixed angles, independent of the wavelength. Two applications of multilayer achromatic waveplate are discussed, the general-purpose phase shifter and the birefringent filter in the Infrared Imaging Magnetograph (IRIM) system of the Big Bear Solar Observatory (BBSO). We also checked an experimental method to measure the retardance of waveplates. We applied a Monte Carlo method -- simulated annealing algorithm -- to carry out the design of multilayer achromatic waveplate. We present solutions for three-, six- and ten-layer achromatic waveplates. The optimized retardance settings are found to be 89°51′39″ ± 0°33′37″ and 89°54′46″ ± 0°22′4″ for the six- and ten-layer waveplates, respectively, for a wavelength range from 1000 nm to 1800 nm. The polarimetric properties of multilayer waveplates are investigated based on several numerical experiments. In contrast to previously proposed three-layer achromatic waveplate, the fast axes of the new six- and ten-layer achromatic waveplate remain at fixed angles, independent of the wavelength. Two applications of multilayer achromatic waveplate are discussed, the general-purpose phase shifter and the birefringent filter in the Infrared Imaging Magnetograph (IRIM) system of the Big Bear Solar Observatory (BBSO). We also checked an experimental method to measure the retardance of waveplates.
出处 《Chinese Journal of Astronomy and Astrophysics》 CSCD 2008年第3期349-361,共13页 中国天文和天体物理学报(英文版)
关键词 INSTRUMENTATION spectrographs -- methods numerical -- methods laboratory-- Sun INFRARED instrumentation spectrographs -- methods numerical -- methods laboratory-- Sun infrared
  • 相关文献

参考文献35

  • 1Beckers J. M., 1971, Appl. Opt., 10, 973
  • 2Beckers J. M., 1972, Appl. Opt., 11,681
  • 3Beckers J. M., Dickson L., Joyce R. S., 1975, Appl. Opt., 14, 2061
  • 4Born M., Wolf E., 1999, Principles of optics : electromagnetic theory of propagation, interference and diffraction of light / Max Born and Emil Wolf; with contributions by A. B. Bhatia et al. Cambridge [England]; New York: Cambridge University Press, 1999
  • 5Cao W., Hartkorn K., Ma J. et al., 2006, Sol. Phys., 238, 207
  • 6Delplancke F., Bernaerd R., Ebbeni J., Sendrowicz H., 1995, Appl. Opt., 34, 2921
  • 7Denker C., Didkovsky L., Ma J. et al., 2003, Astronomische Nachrichten, 324, 332
  • 8Denker C. J., Ma J., Wang J. et al., 2003, Proc. SPIE, 4853, 223
  • 9Denker C. et al., 2006, Proc. SPIE, 6267
  • 10Evans J. W., 1949, Journal of the Optical Society of America (1917-1983), 39, 229

同被引文献45

引证文献6

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部