期刊文献+

腰椎新型钛合金动态内固定系统的稳定性研究 被引量:4

Stability evaluation of a new Iumbar dynamic systems made of a new type titanium-alloy
原文传递
导出
摘要 目的检测由新型钛合金制成的非融合腰椎动态内固定系统的稳定性。方法收集6具平均6月龄的新鲜小牛腰椎标本,在连续的5种状态下,即完整状态、失稳状态、使用DIFSⅠ系统(椎弓根螺钉的弹性模量为75GPa,由新型钛合金制成,其连接棒弹性模量为43GPa,直径为3.5mm)动态固定状态、使用DIFSⅡ系统(椎弓根螺钉的弹性模量为75GPa,由新型钛合金制成,其连接棒弹性模量为72GPa,直径为3.5mm)动态固定状态、使用对照组SINO系统(短尾“U”形椎弓根系统,连接棒直径为5.5mm)坚固固定状态,对小牛L2-6施加10N·m的纯力矩,测量标本在三维6个方向前屈、后伸、左右侧屈和左右旋转的活动范围(ROM)和中性区(NZ)。结果在失稳状态下L3,4 6个方向的ROM和NZ与其他各状态比较,差异均有统计学意义(P〈0.05)。DIFSⅠ系统动态固定与完整状态和SINO系统固定比较差异均无统计学意义。DIFSⅡ系统动态固定与完整状态各方向的ROM和NZ比较差异有统计学意义(P〈0.05),DIFSⅡ系统动态固定与SINO系统固定的各方向ROM和NZ比较差异无统计学意义。L2,3和L4,5的各种状态下6个方向的ROM和NZ比较差异无统计学意义。结论DIFSⅠ系统动态固定既可以维持腰椎的活动性,又可以获得坚强固定的稳定性;DIFSⅡ系统动态固定性质更接近坚强固定。 Objective To investigate whether the new dynamic internal fixation system (DIFS Ⅰ, DIFS Ⅱ ) is capable to restore the physiologic motion characteristic of a spinal segment after operation. Methods Six calf specimens (L2-6) (median age 6 months) were collected. The specimens were loaded with pure moments of 10 N·m in flexion/extension, lateral bending, and axial rotation. The specimens were tested under the following conditions: 1) intact; 2) instable with operating on L3,4; 3) dynamic fixing with DIFS Ⅰ ; 4) dynamic fixing with DIFS Ⅱ ;5) fixing with SINO system. The range of motion (ROM) at six dictions (flexion, extension, left lateral bending, right lateral bending, left axial rotation, and right axial rotation) and neutral zone (NZ) at the fixed and adjacent segments were analyzed using analysis of variance and multiple comparisons with Bonferroni correction. Results For the fixed segment, the defect increased the median values of the ROM and NZ in flexion-extension, lateral bending and axial rotation, comparing with other status (P〈 0.05). After fixation of the implant, the DIFS Ⅰ had no significantly difference with the intact condition, DIFS Ⅱ and SINO system, but the DIFS Ⅱ and SINO system decreased the ROM and NZ in all directions compared with the intact condition (P〈 0.05). The DIFS Ⅱ had no significantly difference with SINO system at the ROM and NZ. At all atatus, there were no significantly differences at the ROM and NZ in L2,3 and L4,5 segments. Conclusion The new dynamic non-fusion internal systems DIFS Ⅰ almost ideally restored the fixed segmental ROM and NZ in flexion-extension, lateral bending and axial rotation to the intact condition and restabilize the defect; the character of DIFS Ⅱ was simile to the SINO system.
出处 《中华骨科杂志》 CAS CSCD 北大核心 2008年第7期592-595,共4页 Chinese Journal of Orthopaedics
关键词 生物力学 腰椎 内固定器 Biomechanics Lumbar vertebrae Internal fixators Titanium
  • 相关文献

参考文献8

  • 1Quint U, Wilke H J, Loer F, et al, Possibilities for static and dynamic stabilization of the spine in lesions of the anterior and posterior ligament complex. Unfallchirurg, 1998, 101: 684-690,
  • 2Wilke H J, Wenger K, Claes L. Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants, Eur Spine J, 1998, 7: 148-154,
  • 3Rigby MC, Selmon GP, Foy MA, et al. Graf ligament stabilisation: mid- to long-term follow-up, Eur Spine J, 2001, 10: 234-236.
  • 4Schmoelz W, Huber JF, Nydegger T, et al. Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech, 2003, 16: 418-423.
  • 5Sengupta DK, Guyer RD, Hochschuler S, eds. Fulcrum assisted soft stabilization in the treatment of low back pain-a new concept. Proceedings of the ISSLS Annual Meeting, Hawaii, 1999. 20,
  • 6Huang RC, Girardi FP, Lim MR, eds. Range of motion and adjacent level degeneration after lumbar total disc replacement. Presented at the 39th Annual Meeting of the Scoliosis Research Society. Buenos Aires, Argentina, 2004.
  • 7Rohlmann A, Calisse J, Bergmann G, et al. Internal spinal fixator stiffness has only a minor influence on stresses in the adjacent discs. Spine, 1999, 24:1192-1196.
  • 8Sengupta DK, Mulholland RC. Fulcrum assisted sofl stabilization system: a new concept in the surgical treatment of degenerative low back pain, Spine, 2005, 30: 1019-1030.

同被引文献64

  • 1郑燕平,刘新宇,贾龙,王延国,黎君彦.腰椎后路椎间融合术后椎间融合的X线片及三维CT评价[J].中华骨科杂志,2009,29(12):1104-1108. 被引量:22
  • 2Wang JC, McDonough PW, Endow KK, et al. Increased fu- sion rates with cervical plating for two-level anterior cervi- eal discectomy and fusion. Spine, 2000, 25: 41-45.
  • 3Lebl DR, Bono CM, Metkar US, et al. Bioabsorbable anteri- or cervical plate fixation for single-level degenerative disor- ders: early clinical and radiographic experience. Spine J, 2011, 11: 1002-1008.
  • 4Sudprasert W, Kunakornsawat S. A preliminary study of three and four levels degenerative cervical spondylosis treat- ed with peek cages and anterior cervical plate. J Med Assoc Thai, 2012, 95: 909-916.
  • 5Zhu Q, Ouyang J, Lu W, et al. Traumatic instabilities of the cervical spine caused by high-speed axial compression in a human model. An in vitro biomechanical study. Spine, 1999, 24: 440-444.
  • 6Wilke HJ, Wenger K, Claes L. Testing criteria for spinal im- plants: recommendations for the standardization of in vitro stability testing of spinal implants. J Eur Spine, 1998, 7: 148-154.
  • 7Bohler J, Ganderhak T. Anterior plate stabilization for frac- ture-dislocations of lower cervical spine. J Trauma, 1980,20: 203-205.
  • 8Yan D, Wang Z, Deng S, et al. Anterior corpectomy and re- construction with titanium mesh cage and dynamic cervical plate for cervical spondylotic myelopathy in elderly osteopo- rosis patients. Arch Orthop Trauma Surg, 2011, 131: 1369-1374.
  • 9Park JY, Zhang HY, Oh MC. New technical tip for anterior cervical plating :make hole first and choose the proper plate size later. J Korean Neurosurg Soc, 2011, 49:212-216.
  • 10Beutler W J, Clavenna AL, Gudipally M, et al. A biomechan- ical evaluation of a spacer with integrated plate for treating adjacent-level disease in the subaxial cervical spine. Spine J, 2012, 12: 585-589.

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部