期刊文献+

关于两类Lucas序列的一些恒等式

Some Identifies Involving two Kinds of Lucas Series
下载PDF
导出
摘要 研究了两类Lucas序列的乘积和问题.利用解析方法给出了第1类Lucas序列和第2类Lucas序列的恒等式.作为应用,给出了几个关于Fibonacci数和Lucas数的恒等式. To study the problem of product summation of two kinds of Lucas series. The authors prove some identities involving the first kind of and second kind of Lucas series by analytic methods. According those identities, The authors obtained some identities on Fibonacci numbers and Lucas numbers.
出处 《海南大学学报(自然科学版)》 CAS 2008年第2期114-118,共5页 Natural Science Journal of Hainan University
基金 国家自然科学基金(10671155) 陕西省专项计划科研项目(04JK132) 商洛学院科研基金项目(06SKY114)
关键词 第1类Lucas序列 第2类Lucas序列 恒等式 积和式 first kind of Lucas series second kind of Lucas series identities product summation.
  • 相关文献

参考文献6

  • 1罗家贵,袁平之.Lucas序列中的平方类[J].数学进展,2006,35(2):211-216. 被引量:1
  • 2YI Yuan , ZHANG Wen-peng. Some identities involving the Fibonacci polynomials [ J ]. Fibonacci Quart, 2002 (40) :314 - 318.
  • 3ZHANG Wen-peng. Some identities involving the Fibonacci numbers [ J ]. Fibonacci Quart, 1997 (35) :225 - 229.
  • 4ZHAO Feng-zhen, WANG Tian-ming. Generalizations of some identities involving the Fibonacci polynomials [ J ]. Fibonacci Quart, 2001 (39) :165 - 167.
  • 5KOSHY T. Fibonacci and Lucas numbers with applications [ M ]. New york:Wiley-Interscience Publications,2001.
  • 6史永堂.关于Chebyshev,Lucas及Fibonacci多项式[J].西北大学学报(自然科学版),2006,36(2):193-196. 被引量:7

二级参考文献20

  • 1YI Yuan, ZHANG Wen-peng. Some identities involving the fibonacci plynomials [ J]. The Fibonacci Quarterly,2002,40( 3 ) :314-318.
  • 2ZHANG Wen-peng. Some identities inrolving the flbonacci numbers[ J]. The Fibonacci Quarterly, 1997, 35 (3) : 225 -229.
  • 3Cohn,J.H.E.,Eight Diophantine equations,Proc.London Math.Soc.,1966,16(3):153-166.
  • 4Cobn,J.H.E.,Five Diophantine equations,Math.Scand.,1967,21:61-70.
  • 5Shorey,T.N.and Tijdeman,R.,Exponential Diophantine Equations,Cambridge Univ.,Press,Cambridge,1986.
  • 6Ribenboim,P.and McDaniel,W.L.,The square Terms in Lucas Sequences,J.Number Theory,1996,58:104-123.
  • 7Cohn,J.H.E.,The Diophantine equation x4-Dy2 = 1,Acta.Arith.,1997,78:401-403.
  • 8Cohn,J.H.E.,The Diophantine equation x4 + 1 = Dy2,Math.Comp.,1997,66:1347-1351.
  • 9Ljunggren,W.,Zur Theorie der Gleichung x2 + 1= Dy4,Avh.Norske Vid.Akad.Oslo,1942,1(5).
  • 10朱卫三.x4—Dy2=1可解的充要条件[J].数学学报,1985,28:681-683.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部