期刊文献+

一个六阶图与星图的笛卡儿积的交叉数(英文)

The crossing number of cartesian product of star with a 6-vertex graph
下载PDF
导出
摘要 图的交叉数已被证明是一个NP-完全问题,由于其难度,要知道图的确切交叉数是非常困难的.到目前为止,只知道少数图的交叉数,其中大部分是特殊图的笛卡儿积图的交叉数,比如路,圈以及星图与点数较"少"的图的笛卡儿积交叉数.在这些基础上,应用数学归纳法,把相关结果拓展到1个6-阶图G,并确定它与星的笛卡儿积交叉G×SnZ(6,n)+3[n/2]. Computing the crossing number of a given graph has been proved to be NP-complete. It is very difficult to determine the exact crossing number of a given graph for its complicity. The crossing numbers of few families of graphs are known. So far, most of which are Cartesian Products of special graphs, such as Cartesian Products of paths, cycles or stars with "small" vertex graphs. On these basis, by using the induction method, this paper extends these results to a special 6-vertex graph G and then determines the crossing number of the Cartesian product of G×Sn is Z(6,n)+3[n/2].
出处 《湖南文理学院学报(自然科学版)》 CAS 2008年第2期6-11,共6页 Journal of Hunan University of Arts and Science(Science and Technology)
基金 国家自然科学基金资助项目(0771062) 教育部"新世纪优秀人才支持计划"项目(NCET-070276)
关键词 画法 交叉数 笛卡儿积 graph drawing crossing number star cartesian
  • 相关文献

参考文献16

  • 1[1]J A Bondy,M S R Murty.Graph Theory with Applications[M].New York:Am.Elsvier,1976.
  • 2[2]M R Garary,D S Johnson.Crossing number is NP-complete[J].SIAM J.Algebric Discrete Methods,1993(4):312-316.
  • 3[3]Marian Kle s c.The crossing number of Cartesian products of paths with 5-vertex graphs[J].Discrete Math,2001,233:353-359.
  • 4[4]L W Beineke,R D Ringeisen.On the crossing number of cycles and graphs of order four[J].J.Graph Theory,1980(4):145-155.
  • 5[5]M Kle s c.The crossing numbers of paths and stars with 4-vertex graphs[J].J.Graph Theory,1994,18:605-614.
  • 6[6]M Kle s c.The crossing numbers of K5×Pn[J].Tatra Mountain Math.Publ.,1999,18:63-68.
  • 7[7]M Kle s c.The crossing number of certain Cartesian products[J].Discuss.Math.Graph Theory,1995,15:5-10.
  • 8[8]M Kle s c.The crossing numbers of K2,3×Pn and K2,3×Sn[J].Tatra Mountain Math.Publ.,1996,9:51-56.
  • 9[9]A M Dean,R B Richter.The crossing number of C4×C4[J].J.Graph Theory,1995,19:125-129.
  • 10[10]M Kle s c,R B Richter,Ian Stobert.The crossing numbers of C4×C4[J].J.Graph Theory,1996,22:239-243.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部