期刊文献+

基于模型诊断的发展与展望 被引量:1

Development & Prospect of Model-based Diagnosis
原文传递
导出
摘要 在智能故障诊断领域中,基于模型诊断方法已经成为研究者们主要研究的对象。但是,其计算的难解性、诊断结果的数目的庞大,对实际问题没有统一、寻求适当的模型表示方法是基于模型智能故障诊断必须面临的瓶颈问题。针对国内外专家学者的研究成就和现状,本文对基于模型诊断方面的主要研究成果进行了简要地介绍,对各种方法的优点和不足进行分析,并对进一步的研究提出了一些建议。 In the area of intelligent fault diagnoses, the model-based approach is the main approach adopted. However,researchers still have to face the situation that no approach can be found to completely deal with computational complexity and the huge number of solutions to a diagnostic task of model-based diagnoses as well as no suitable representation within some real-world problems.According to achievements and the present status of research on model-based diagnoses not only is the relatively mature theory of model-based diagnosis approaches simply introduced but also their advantages and disadvantages are analyzed,what is more,some pertinent suggestions are proposed for further researches.
出处 《世界科技研究与发展》 CSCD 2008年第2期156-160,共5页 World Sci-Tech R&D
基金 珠海市重大科技计划项目(PB2006101) 暨南大学珠海学院创新基金(Cx07146)
关键词 最小诊断 核心诊断 静态模型 动态模型 分层诊断 贝叶斯网络 minimal diagnosis kernel diagnosis static model dynamic model hierarchical diagnosis bayesian networks
  • 相关文献

参考文献31

  • 1Friedrich G,Gottlob G,Nejdl W.Physical impossibility instead of fault models[C].AAAI,1990:331-336.
  • 2Bylander T,Allenmang D,Tanner M,et al.The computational complexity of abduction[J].Artificial Intelligence,1991,49(1-3):25-60.
  • 3De kleer,Mackworth J A,Reiter R.Characterizing diagnoses and systems[J].Artificial Intelligence,1992,56(2-3):197-222.
  • 4Reiter R.A theory of diagnosis from first principles[J].Artificial Intelligence,1987,32:57-95.
  • 5Pcole D.Normality and faults in loglc-based diagnosis[C].In:Proceedings of the Eleverth International Joint Conference on Artiffical Intelligence.Detroit MI,1989,1304-1310.
  • 6Pcole D.Representing knowledge for logic-based diagnosis[J].Proc Int Conf on Fifth Generation Computer Systems,1988:1282-1290.
  • 7Dechter R,Y EL Fattah.Diagnosing tree-decomposable circuits[C].In:Proceedings of the 14^th International Joint Conference on Artificial Intelligence-IJCAI95,Montreal,Canada.
  • 8De Kleer J,Williams B C.Diagnosing multiple faults[J].Artificial Intelligence,1987,32:97-130.
  • 9Console L,Toraaso P.A spectrum of logical definitions of modelbased diagnosis[J].Computational Intelligence,1991,7(3):133-141.
  • 10De Kleer,Williams B C.Diagnosis with behavioral modes[C].In:Proceedings of the 1 lth International Joint Conference on Artificial Intelligence,Detroit,MI,1989,1324-1330.

同被引文献6

  • 1赵冲冲,廖明夫,于潇.基于支持向量机的旋转机械故障诊断。[J].振动.测试与诊断,2006,26(1):53-57. 被引量:21
  • 2Vladimir N.Vapnik.Static M Learning Theory.张学工等译.统计学习理论[M].北京:电子工业出版社,2004.
  • 3Tax D M J, Duin R P W. Outliers and data descrip-tions [ A ]. Seventh Annual Conference of the Advanced School for Computing and Imaging. Delft ,2001.
  • 4Chapelle O, Vapnik V, Bousquet O, et al. Choosing multiple parameters for support vectormachines [ J]. Machine Learning, 2002,46 : 131 - 159.
  • 5Keerthi S S. Efficient tuning of SVM hyperpara-meters using radiusmargin bound and iterative algorit-hmmms[J]. IEEE Trans. On NeuralNetworks,2002,13 : 15 - 22.
  • 6王长林,陈鸿宝,林玮,秦启茂,宋宜梅.SVM模式识别技术及在机械故障诊断中的应用进展[J].桂林电子科技大学学报,2009,29(3):256-259. 被引量:9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部