期刊文献+

搜索引擎用户查询中的复杂专有名词识别 被引量:3

Recognition of complex named-entities in user queries of search engine
下载PDF
导出
摘要 专有名词识别(Named-Entity Recognition,NER)是自然语言处理和信息检索的基础。现有的很多文献集中于人名、地名、机构名等的识别,很少涉及到书名和电影名等较为复杂的专有名词。专注于某搜索引擎的用户查询日志中出现的这类复杂专有名词的识别。根据用户的查询在网络中的上下文数据,将查询进行粗切分,并利用该网络数据作为训练语料训练复杂专名分类器。使用三种不同的分类器,证实该方法能取得相当好的效果。 Named-Entity Recognition (NER) is a fundamental task for natural language processing and information retrieval. Literatures are full of person,location and organization names,while complex named-entities as book names and movies names are seldom refen'ed.The authors focus on the recognition of such complex named-entities in query logs of a search engine.The authors roughly segment the queries according to their Web context and use the Web data to train a complex named-entities classifier.The authors use three different classifiers,which show that the methods have fairly good performance.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第19期153-155,共3页 Computer Engineering and Applications
关键词 专有名词识别 网络数据 决策表 切分 Named-Entity Recognition(NER) Web data decision list segment
  • 相关文献

参考文献10

  • 1Collins M,Singer Y.Unsupervised models for named entity classification[C]//Proceedings of the Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora, 1999 : 159-196.
  • 2Downey D,Broadhead M,Etzioni O.Locating complex named entities in Web text[C]//Proc of IJCAI,2007.
  • 3Kan M,Thi H.Fast Webpage classification using URL features[C]// Proceedings of the 14th ACM International Conference on Information and Knowledge Management,2005.
  • 4Kosala R,Blockeel H.Web mining research:a survey[C]//ACM SIGKDD Explorations Newsletter, 2000,2 ( 1 ) : 1-15
  • 5Nadeau D,Turney P,Matwin S.Unsupervised named-entity recognition:generating gazetteers and resolving ambiguity[C]//19th Canadian Conference on Artificial Intelligence,2006.
  • 6Xue N,Palmer M.Calibrating feartures for semantic role labeling[C]// Proceedings of EMNLP,2004.
  • 7Yarowsky D.Unsupervised word sense disambiguation rivaling supervised methods[C]//Proceedings of the 33rd Conference on ACL, 1995:189-196.
  • 8Joachim T.Making large-scale SVM learning practical[M]//Scholkopf B,Burges C,Smola A.Advances in Kernel Methods-Support Vector Learning.[S.l.] : MIT-Press, 1999.
  • 9Maximum entropy modeling toolkit for python and C++[EB/OL]. [2007 - 10 - 15].http://homepages.inf.ed.ac.uk/s0450736/maxent_toolkit.html.
  • 10Liu H,Hu X Y.Identifying complex named-entities in queries using WorldWideWeb[D].Shanghai:Shanghai Jiaotong University, 2007.

同被引文献41

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部