期刊文献+

基于改进遗传算法遥感图像非监督分类研究 被引量:3

Research of unsupervised classification of remote sensing image based on modified genetic algorithm
下载PDF
导出
摘要 传统的非监督分类方法通过人为预先设定的类别数把像素划分到相应的类别中,但类别数事先不能精确得到,因此会增大误分率,降低分类精度。提出一种新的可变聚类数目的染色体、采用Davies-Bouldin系数作为适应度,通过对传统遗传算法的一系列改进自动进化出高分辨率遥感图像的类别数和聚类中心。同时,采用整型数据来进行染色体编码,不仅降低了计算复杂度,同时也节省了存储空间。算法已用VC实现程序设计,程序结果证明该改进算法的正确性并获得令人满意的实验结果。 The traditional unsupervised classification divides all pixels into a corresponding class pixel by pixel.But the clustering number is not obtained accurately in advance,which would result in increasing the error classification rate and decreasing the classification accuracy.A new modified genetic algorithm is brought forward in order to obtain the clustering number and clustering centers of high resolution remote sensing image automatically properly.First,a new chromosome string is encoded by integer data in order to satisfy the variable clustering number,which not only decreases the computing complexity but also saves the memory space.Second,the Davies-Bouldin index is used as a measure of the validity of the clusters.Finally,a series of measures are used to modify the traditional genetic algorithm in order to enhance the adaptability and robusticity.All these are programmed with VC.The results prove the validity of the modified genetic algorithm and an optimization result of the remote sensing image classification is obtained.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第19期178-179,202,共3页 Computer Engineering and Applications
关键词 分类 遗传算法 整型编码 遥感图像 classification genetic algorithm integer encoding remote sensing image
  • 相关文献

参考文献6

  • 1Yang Ming-der,Yang Yeh-fen.Genetic algorithm for unsupervised classification of remoter sensing imagery[C]//Proc of SPIE-IS & Telectronic Imaging, 2004 : 395-402.
  • 2Alippi C,Cucehiara R.Cluster partitioning in image analysis classification:a genetic algorithm approaeh[C]//Proeeedings of Computer System and Software Engineering, 1992(5): 139-144.
  • 3Bandyopadhyay S,Maulik U.Genetic clustering for automatic evolution of clusters and application to image classification [J].IEEE Pattern Recognition, 2002,35 : 1197-1208.
  • 4寇光杰,武玉强.基于遗传聚类的彩色图像分割[J].计算机工程与应用,2003,39(27):87-90. 被引量:1
  • 5李建华,王孙安,杜海峰.一种改进的遗传算法:Family GA[J].控制与决策,2004,19(9):999-1003. 被引量:12
  • 6王小平,曹立明.遗传算法-理论、应用与软件实现[M].西安:西安交通大学出版社,2004:1-14,29-39,136-140.

二级参考文献18

  • 1刘健庄,谢维信,高新波.多阈值图像分割的遗传算法方法[J].模式识别与人工智能,1995,8(A01):126-132. 被引量:8
  • 2[1]Holland J H. Adaptation in Nature and Artificial System[M]. Ann Arbor: The University of Michigan Press, 1975.
  • 3[2]Radolph G. Convergence analysis of canonical genetic algorithms[J]. IEEE Trans on Neural Network,1994,5(1) :96-101.
  • 4[3]Qix F. Palmieri theoretical analysis of evolutionary algorithms with an infinite population size in continuous space [J]. IEEE Trans on Neural Network, 1994,5(1) : 102-129.
  • 5[8]Chen Wei,Chen Li,Ma Yao.The improvement ofgenetic algorithm performance[A].Proc of 2002 IntConf On Machine Learning and Cybernetics[C].Beijing,2002.945-951.
  • 6C-Y Lee,E K Antonsson.Dyna[J]ic Partition Clustering Using Evolution Strategles[J].California Blvd Pasadena,CA 91125,U S A.
  • 7V Cherkassky, F Mulier.Learning fro[J] Data : Concepts, Theory, and Methods[M].John Wiley, 1998.
  • 8A Ghozeil,D B Fogel.Discovefing patterns in spatial data using evolutionary progra[K]ing[C].In:Proceedings of the first annual conference,Ca[J]bridge, MA : MIT Press: 1996:512-520.
  • 9K Krishna,M Narasi[J]ha Murty.Genetic K-Means Algorith[K].IEEE Trans on Syste[J]s Man and Cybernetics-Part B:CYBERNETICS,1999; 29(3) :433-439.
  • 10Baker J E.Adapfive Selection Methods for Genetic Algorith[J]s[C]. In :Grefenstette J J ed.Proc of the 4th Int'l Conf on Genetic Algorith[J]s, Lawrence Earlbau[J] Associates, Hilladale, NJ, 1985 : 110-111.

共引文献26

同被引文献59

引证文献3

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部