期刊文献+

一种基于互信息的图像频域配准算法

Frequency domain approach based on mutual information to image registration
下载PDF
导出
摘要 图像配准是多源图像分析的关键步骤,是图像应用的基础。频域配准方法具有配准精度高和速度快的优点。P.Vandewalle的频域配准算法明显优于其他频域算法和一些空间域算法,对该算法进行了改进,仅使用了一半图像频谱灰度,在对分块后的频谱灰度进行分析时引入了互信息理论,实现了配准精度更高、速度更快的基于互信息的图像频域配准算法。 Image registration is the key step of image analysis with images from multiple resources.It is also the foundation of image application.The advantages of frequency approaches to registration are rapidness and high precision.The frequency approach proposed by P.Vandewalle outperforms previous frequency methods and some special domain methods.In this paper,it is improved to be faster and get higher preeision.Finally,a frequency domain approach based on mutual information to image registration is presented by using half the amplitude of the Fourier transform and mutual information theory .
出处 《计算机工程与应用》 CSCD 北大核心 2008年第19期190-192,共3页 Computer Engineering and Applications
基金 四川省教育厅自然科学青年基金项目(the Youth Natural Science Foundation of Department of Education of Sichuan Province of China No.07ZB088)
关键词 配准 互功率谱 互信息 傅里叶频谱 registration cross-power spectrum mutual information amplitude of the Fourier transform
  • 相关文献

参考文献4

  • 1甘亚莉,涂丹,李国辉.频率域基于梯度预处理的互相关图像配准方法[J].计算机工程与应用,2007,43(6):24-26. 被引量:6
  • 2Vandewalle P,Stisstrunk S,Vetterli M.A frequency domain approach to registration of aliased images with application to super-resolution[J].EURASIP Journal on Applied Signal Processing:Special Issue on Super-Resolution,2006:14.
  • 3郑志彬,叶中付.基于相位相关的图像配准算法[J].数据采集与处理,2006,21(4):444-449. 被引量:34
  • 4Russakoff D B,Tomasi C,Rohlfing T,et al.Image similarity using mutual information of regions[C]//LNCS 3023 :Proc of the 8th European Conference on Computer Vision(ECCV),2004:596-607.

二级参考文献13

  • 1[1]Brown L G.A survey of image registration technique[J].ACM Computing Surveys,1992,24(4):326-376.
  • 2[2]Zitova B,Flusser J.Image registration methods:a survey[J].Image and Vision Computing,2003,21(11):977-1000.
  • 3[3]Kuglin C D,Hines D C.The phase correlation image alignment method[C]//IEEE International Conference on Cybernetics and Society.New York,USA:[s.n.],1975:163-165.
  • 4[4]Averbuch A,Keller Y.FFT based image registration[C]//IEEE International Conference on Acoustics,Speech,and Signal Processing.Orlando,USA:[s.n.],2002:3608-3611.
  • 5[5]Castro E De,Morandi C.Registration of translated and rotated images using finite Fourier transforms[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1987,9(5):700-703.
  • 6[6]Lucchese L,Cortelazzo G M.A noise-robust frequency domain technique for estimate planar roto-translations[J].IEEE Transactions on Signal Processing,2000,48(6):1769-1786.
  • 7[7]Chen Q,Dfrise M,Deconinck F.Symmetric phase-only matched filtering of Fourier-mellin transform for image registration and recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16(12):1156-1168.
  • 8[8]Reddy B S,Chatterji B N.An FFT-based technique for translation,rotation,and scale-invariant image registration[J].IEEE Transactions on Image Processing,1996,5(8):1266-1271.
  • 9Zitova B,Flusser J.Image registration methods:a survey[J].Image and Vision Computing,2003,21:977-1000.
  • 10Sung C P,Min K P,Moon G K.Super-resolution image reconstruction:a technical overview[J].IEEE Signal Processing Magazine,2003(5):21-36.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部