期刊文献+

视频监控中人的运动检测方法研究与实现 被引量:1

Enhanced human motion detection algorithm and its implementation based on video surveillance
下载PDF
导出
摘要 为了提高视频监控的实时性、准确性和可靠性,引入运动目标检测非常必要,而在此基础上的人运动检测更是后续各种高级处理的基础。根据视频监控的特点,采用一种基于自适应背景图像估计与当前多帧图像的混合差的算法来实现快速精确地检测和提取运动目标区域,并充分利用视频图像的时域连续特性和人脸肤色信息,实现快速可靠的人脸定位,从而准确定位人运动区域。实验表明,该算法对人的运动检测在光线、姿势变化等情况下具有良好的鲁棒性,适于实时监控系统的应用。 It is very necessary to apply motion detection to video surveillance in order to enhance the performance of system, and human motion detection is the foundation of advanced operations.An enhanced algorithm in which background image estimation based self-adaptation is combined with current consecutive fi'ames subtraction,which can detect motive region rapidly and exactly.Afterward,it can realize human motion detection quickly and reliably by face detection which is based on the consecution of time domain in video images and skirl information of face.According to real-time quality,presented the veracity and reliability of video surveillance is presented in this paper.The result of experiment demonstrates that the algorithm is robust in complex situation and adapts to video surveillance.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第19期206-209,234,共5页 Computer Engineering and Applications
基金 上海科委基金项目(No.015115042)
关键词 视频监控 运动检测 帧间差分 背景差分 肤色模型 video surveillance motion detection two consecutive frames subtraction background subtraction skirl model
  • 相关文献

参考文献7

  • 1Collins R,Introduction to video surveillance [EB/OL].[2005-06-12]. http ://www.cityus.it/pdf/01 lecture.pdf.
  • 2韩思奇,王蕾.图像分割的阈值法综述[J].系统工程与电子技术,2002,24(6):91-94. 被引量:332
  • 3Otsu N,A threshold selection method from gray-level histograms[J]. IEEE Trans on System, Man and Cybernetics, 1979,9 ( 1 ) : 62-66.
  • 4Guo R,Pandit S M.Automatic threshold selection based on histogram modes and a discriminant criterion[J].Machine Vision and Application, 1998, (10) : 331-338.
  • 5Hsu Rein-lien,Abdel-Mottaleb M,Jain A,et al.Face detection in color images[J].IEEE Trans on Pattern Analysis and Machine Intelligence, 2002,24(5 ) : 696-706.
  • 6Gonzalez R C,Woods R E.数字图像处理[M].2版.阮秋琦,阮宇智,等译.北京:电子工业出版社,2003
  • 7Abdel-Mottaleb M,Elgammal A.Face detection in complex environments from color images[J].IEEE Int'l Conf on Image Processing, 1999 : 622-626.

二级参考文献20

  • 1[1]Pal N R,Pal S K.A Review on Image Segmentation Techniques[J].Pattern Recognition,1993,26(9):1277-1294.
  • 2[2]Bhanu B,Lee S,Ming J.Alaptive Image Segmentation Using a Genetic Algorithm[J].IEEE Trans.on System,Man,and Cybernetics,1995,5(12):1543-1565.
  • 3[3]Doyle W.Operation Useful for Similarity-Invariant Pattern Recognition[J].J.Asssoc.Comput.Mach.,1962,9:259-267.
  • 4[4]Lee S,Chung S.A Comparative Performance Study of Several Global Thresholding Techniques for Segmentation[J].Computer Vision,Graphics,and Image Processing,1990,52:171-190.
  • 5[5]Ostu N A.Threshold Selection Method from Gray-Level Histograms[J].IEEE Trans.on System,Man,and Cybernetics,1979,9(1):62-66.
  • 6[6]Tsai W H.Moment-Preserving Thresholding:A New Approach[J].Computer Vision,Graphics,and Image Processing,1985,29:377-393.
  • 7[7]Kittler J,Illingworth J.Minimum Error Thresholding[J].Pattern Recognition,1986,19:41-47.
  • 8[8]Cho S,Haralick R,Yi S.Improvement of Kittler and Illingworth's Minimum Error Thresholding[J].Pattern Recognition,1989,22:609-617.
  • 9[9]Rosenfeld A,De La Torre P.Histgram Concavity Analysis as an Aid in Threshold Selection[J].IEEE Trans.on Systems,Man and Cybernetics,1983,SMC-13:231-235.
  • 10[10]Pun T.A New Method for Gray-Level Picture Thresholding Using the Entroy of the Histgran[J].Signal Processing,1980,2:223-237.

共引文献342

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部