期刊文献+

时间域上抛物型方程正反演解的稳定性分析

Stability Analysis of Forward-backward Problem with a Class of Parabolic Equation in Time Domain
下载PDF
导出
摘要 文章讨论了一类抛物型方程正反演解的稳定性,对于相应的正问题,证明了解的稳定性与估计,同时利用对数的凸性方法来证明反演的指数稳定性,得出了稳定性估计;给出了数值模拟,结果显示数值解与理论解吻合很好. The stability analysis for the solution of the forward-backward problem of the parabolic equation is discussed in the paper. As for countparting forward problem, the stability analysis solution of the forward problem is illuminated. Simultaneity, using the method of the logarithm of the protruding character testify the exponential stability of the inverse problem and get the stability of the estimation.Then numerical simulation experiments are provided,and the results manifests that the numerical solution and the theoretical are well consistent.
作者 左锦辉 王燕
出处 《四川理工学院学报(自然科学版)》 CAS 2008年第3期16-19,共4页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
关键词 抛物型方程 正反演 稳定性 parabolic equation forward-backward problem stability
  • 相关文献

参考文献7

二级参考文献12

  • 1李功胜,袁忠信,徐肇昌.热传导方程第三边值的非线性热源的反演[J].郑州大学学报(自然科学版),1994,26(3):10-20. 被引量:5
  • 2[13]Wei T,Hon Y C.2002.A Meshless Computational Method for Solving Inverse Heat Conduction Problem[J],International Series on Advances in Boundary Elements,13:135-144.
  • 3[10]Elden L.1982.Time discretization in the backward solution of parabolic equation[J].I,Math.Comp.39:53-68.
  • 4[11]Alemdar Hasanov,Jennifer L.Mueller.2001.Anumerical method for backward parabolic with non-selfadjoint elliptic operators[J].Elsevier.Applied Numerical Mathematics,37:55-58.
  • 5[12]Denisov A M.1999.Element of the theory of inverse problem[M].Utrecht:VSP BV
  • 6Jonas P & Louis A K.Approximate Inverse for a One-dimensional Inverse Heat Conduction Problem[J].Inverse Problems,2000.16(1):175-185.
  • 7Lesnic D & Elliott L.The Decomposition Approach to Inverse Heat Conduction[J].Journal of Mathematical Analysis and Application,1999,232(1):82-98.
  • 8Liu J.A Stability Analysis on Beck's Procedure for Inverse Heat Conduction Problem[J].Journal of Computational Physics,1996,123(1):65-73.
  • 9Shen S Y.A Numerical Study of Inverse Heat Conduction Problems[J].Computers and Mathematics With Applications,1999,38(7-8):173-188.
  • 10徐定华.数学物理中反问题与边值问题的积分方程方法[M].上海:上海大学出版社,2001.20-39.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部