期刊文献+

基于改进互信息的特征提取的文本分类系统 被引量:2

Text Classification System Based on Feature Selection of Improvement Mutual Information
下载PDF
导出
摘要 文章提出并实现了一种改进互信息的特征提取和支持朴素贝叶斯的文本分类系统,改进的互信息算法加强了负值单词的互信息值,弥补了原来互信息预处理算法的不足,从而提高了分类精度.实验结果表明本算法和系统具有较高的分类准确率。 This paper implements and take affect a kind of text classification system based on feature selection of improvement mutual information and supporting Naive Bayes, the algorithm of improved mutual information intensify the mutual information of negative, offset the deficiency of improved mutual information arithmetic and improve clasification precision, Experimental results indicate that algorithm and system have better clasification precision.
出处 《四川理工学院学报(自然科学版)》 CAS 2008年第3期93-96,共4页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
基金 四川省教育厅青年自筹基金项目(编号:07ZB151)
关键词 文本分类 特征提取 改进互信息 朴素贝叶斯 text clasification feature selection improved mutual information Naive Bayes
  • 相关文献

参考文献4

二级参考文献23

  • 1黄萱青 吴立德.独立于语种的文本分类方法[M].,2000.37-43.
  • 2鲁松 白硕 等.文本中词语权重计算方法的改进[M].,2000.31-36.
  • 3卜东波.聚类/分类理论研究及其在大模型文本挖掘的应用:博士论文[M].,2000..
  • 4David Maxwell. Learning equivalence classes of Bayesian - network structures[ J ]. Machine Learning, 2002 (2) :445 - 498.
  • 5Nir Friedman. Bayesian network classifiers[ J ]. Machine Learming, 1997,29:131-163.
  • 6Marco Ramcni. Robust Bayes clasifiers[J]. Artificial Intelligence,2001,125(1,2) :209- 226.
  • 7David Heckerman. Learning Bayesian networks: the combination of knowledge and statistical data[J ]. Machine Learning, 1995,20:197- 243.
  • 8Cheng Jie. Learning Bayesian networks from data: an information - theory based approach[J]. Artificial Intelligence,2002,137(1,2) :43-90.
  • 9Wong M L. Using evolutionary programming and mininum description length prindple for data mining of Bayesian networks[ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999,21 ( 2 ) : 174-178.
  • 10SALTON G, WONG A, YANG C S. A vector space model for automatic indexing[J]. Communications of the ACM, 1975, 18 (11) :613 - 620.

共引文献357

同被引文献10

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部