期刊文献+

pq阶亚循环群局部传递的图

Graphs on Metacyclic Group of Orderacts Locally-Transitively
下载PDF
导出
摘要 所指的图是有限的、单的、无向的且无孤立点。如果图的自同构群分别在图的边集合和点集合上传递,分别称图是边传递的和点传递的。设G≤Aut(Γ),如果对于每个α∈V(Γ),Gα在Γ(α)上传递,则称Γ是G-局部传递图。主要利用边传递、点传递和局部传递的关系及陪集图的理论,获得了关于pq(p、q是素数,p>q)阶亚循环群局部传递的图的完全分类。获得的结果为:关于pq阶群局部传递的图或为弧传递图,或为二分的边传递图,或为一些边传递图的并。 All graphs are finite simple undirected graph with no isolated vertices in this paper, p and q are prime number. The graph Г is said to be G-vertex-transitive or edge-transitive if its automorphism group G acts transitively on the vertex set or edge set of Г. Gα is the stabilizer of α in automorphism group G for a α ∈ V(Г), the set of vertices adjacent to α is called the neighborhood of α in F and denoted by Г(α), F is said to be locally-transitive if Gα is transitive on Г(α). In the paper we take advantanged of the relationships among vertex-transitive, edge-transitive and locallytransitive graphs and the theorey of the cosets graphs and completed the classification of graphs on which a metacylic group of orderacts locally transitively. The main results are: that the graphs which the group of order pq acts loclly transitively are arc-transitive graphs, edge-transitive graphs or the union of some edge-transitive graphs.
出处 《中国民航大学学报》 CAS 2008年第3期57-61,共5页 Journal of Civil Aviation University of China
基金 国家自然科学基金项目(60776810) 天津市自然科学基金项目(08JGYBJG13900) 中国民航大学科研基金项目(KYS10)
关键词 自同构群 局部传递 边传递 graph automorphism group edge-transitive locally-transitive
  • 相关文献

参考文献6

  • 1[1]徐明耀.有限群导引(上、下册)[M].北京:科学出版社,1999.
  • 2[2]SANDER R S.Graphs on which a dihedral group acts edge-transitively[J].Discrete Mathmatics,1993,118:225-232.
  • 3陈尚弟.有循环极大子群的素数幂阶群的作用是边传递的图(Ⅰ)[J].系统科学与数学,2005,25(3):331-339. 被引量:8
  • 4[4]CAI HENG LI,PRAEGER C E,VENKATESH A,et al.Finite Locally quasiprimi-tive groups[J].Discrete Mathematics,2002,246:197-218.
  • 5[5]DIXON JOHN D,MORTIMEN BRIAN.Permutation Group[M].New York:Springer-Verlag,1997:18.
  • 6[6]GODSIL C,ROYLE G.Algebraic Graph Theorem[M].New York:Springer-Verlag,2001:36.

二级参考文献8

  • 1Wielandt H. Finite Permutation Group. New York: Academic Preess, 1964.
  • 2Harary F. Graph Theory. Addiso-Wesley, Reading, Mass, 1969.
  • 3Biggs N. Algebraic Graph Theory. Combridge Tracts in Math. London: Combridge Univ. Press,1974.
  • 4Ivanov A A. Distance-transitive representation of the symmetric group. J. Combin Theory, ser. B,1986, 41: 255-274.
  • 5Sander R S. Graphs on which a dihedral group acts edge-tansitively. Discrete Mathmatics, 1993,118: 225-318.
  • 6Robinson J S. A Couse in the Theory of Group. New York: Spring-Verlag, 1982, 136-137.
  • 7Yap H P. Some Topics in Graph Theory. London Math. Suc. Lecture Note, Series 108. London:Combridge Univ. Press, 1986, 90 .
  • 8Dixon John D, Mortimer Brian. Permutation Group. New York: Springer-Verlag, 1997, 10.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部