期刊文献+

阻尼识别的小波和EMD方法仿真对比研究 被引量:8

Simulation Contrast of Wavelet Transform and Empirical Mode Decomposition in Damping Identification
下载PDF
导出
摘要 利用具体的平稳仿真信号,分别应用小波分析方法和EMD(Empirical Mode Decomposition,简称EMD)方法进行了阻尼的识别,物理意义明确且非常直观,认为在未引入噪声的前提下,二者均具有较好的识别效果;而当信号受到噪声污染时,小波方法的识别效果要好于EMD方法。因此,应用本文处理方法于实际阻尼识别中时,应根据具体情形而决定,以达到较好的识别效果。 Through a specific steady simulation signal,the damping identification is made by using the wavelet method and the empirical mode decomposition(EMD) method separately,which has a definite and visual physical meaning.It is found that both methods have good results when the noise is not introduced to the signal;but the wavelet method is better than the EMD when the signal is mixed with noise.In practical applications,we should select different processing methods according to the signal to be identified to achieve a good result.
作者 孙亮 侯宏
出处 《振动.测试与诊断》 EI CSCD 2008年第2期164-167,共4页 Journal of Vibration,Measurement & Diagnosis
关键词 小波变换 EMD分解 阻尼识别 MATLAB仿真 wavelet transform empirical mode decomposition(EMD) damping identification Matlab simulation
  • 相关文献

参考文献2

二级参考文献27

  • 1朱继梅.小波变换及其工程应用(连载)[J].振动与冲击,1996,15(2):94-100. 被引量:14
  • 2Feldman M , ( 1985 ) , Investigation of the natural vibrations of machine elements using the Hilbert transform [ J ]. Soviet Machine Science, 2 : 44-47.
  • 3Feldman M , (1994), Non-linear system vibration analysis using the Hilbert transform-Ⅰ. Free vibration analysis method ‘ FREEVIB’ [ J].Mech Syst Signal Process. 8, 309- 18.
  • 4Hammond J K and Davis P , (1987), The use of envelope and instantaneous phase methods for the response of oscillatory non-linear systems to transients[ A]. Proc Of the 5th IMAC[ C]. Longdon, 1460 - 1466.
  • 5Clough R W and Penzien J , (1993) , Dynamics of Structures (second edition) [ M]. McGraw-Hill.
  • 6Yang J C S and Dagalakis N G , ( 1983), Measurement of structural damping using the random decrement technique[J]. Shock and Vibration Bulletin, 53(4): 63-71.
  • 7Xu Y L , et al, (1999) , Pseudo-excitation method for vibration analysis of wind-excited structures[J]. J of Wind Eng Ind Aerodyn. 83:443 - 454.
  • 8Kareem A, Gurley K , (1996) , Damping in structures: its evaluation and treatment of uncertainty[ J]. J of Wind Eng and Industrial Aerodynamics, 59, 131 - 157.
  • 9Huang, N E , Shen Z , Long S R , Wu M J C , Shih H H , Zheng Q No , Yen N C , Tung C C and Liu H H , (1998), The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis [ J ]. Proc R Soc Lond A, 454:903 - 995.
  • 10Huang, N E, Z Shen, and S R Long ( 1999), A new view of nonlinear water waves: the Hilbert Spectrum[J]. Annu Rev Fluid Mech , 31:417 -457.

共引文献37

同被引文献60

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部