期刊文献+

基于BP神经网络的行人和自行车交通识别方法 被引量:11

A Study on Pedestrian and Cyclist Recognition Based on BP Neural Network
下载PDF
导出
摘要 研究了基于BP神经网络的行人和自行车识别方法.首先对图像提取4个特征,形成特征向量作为BP神经网络的输入;然后设计BP神经网络的结构,网络输出为对行人和自行车的识别;为了确定BP神经网络合理的隐层神经元数目,分别对不同隐层神经元数目的神经网络进行了实验分析.最后利用实测的数据对BP神经网络进行训练、仿真实验,并对实验结果进行分析;结果表明:最佳网络的正确识别率为84%,行人和自行车的正确识别率分别为89%和71%. A study on the pedestrian and cyclist recognition based on the backpropagation(BP) neural network is presented in this paper. The binary image of moving object contour is processed by the method presented here. The method first draws four features from the binary image and forms the feature vector as the input of BP neural network. The output of BP neural network is the recognition of pedestrians and cyclists. Secondly, the structure of BP neural network is designed. In order to obtain the reasonable number of the hidden layer neuron, the paper performs experiments with the BP neural network with the different number of the hidden layer neuron. Finally, the BP neural network is trained and simulated by using the data of actual measurement and the experiment results are analyzed. For the best BP neural network, the right recognition ratio, the pedestrian right recognition ratio and the cyclist right recognition ratio are 84%, 89% and 71% respectively.
出处 《北京交通大学学报》 CAS CSCD 北大核心 2008年第3期46-49,共4页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家"十五"攻关项目(2005BA414B02) 北京交通大学校科技基金资助项目(2005SM085)
关键词 交通工程 模式识别 行人识别 自行车识别 BP神经网络 traffic engineering pattern recognition pedestrian recognition cyclist recognition BP neural network
  • 相关文献

参考文献8

  • 1边肇祺,张学工.模式识别[M].第2版.北京:清华大学出版社,2004.
  • 2Satoshi Yasutomi, Hideo Mori. A Method for Discriminating of Pedestrian Based on Rhythm[ C]//Intelligent Robots and Systems ‘94. ' Advanced Robotic Systems and the Real World, IROS '94. Proceedings of the IEEE/RSJ/GI International Conference on Volume 2,12 - 16 Sept, 1994, Page(s) : 988 - 995.
  • 3Pai Chiajung, Tyan Hsiaorong, Liang Yuming, et al. Pedestrian Detection and Tracking at Crossroads[J]. Pattern Recognition, 2004,37 : 1025 - 1034.
  • 4Dukesherer John, H Smith, Chrstopher E. A Hybrid Hough-Hausdorff Method for Recognizing Bicycles in Natural Scenes [J]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 2001, 4:2493 - 2498.
  • 5Heikkila J, Silven O. A Real-Time System for Monitoring of Cyclists and Pedestrians[J]. Image and Vision Computing, 2004, 22 (7): 563- 570.
  • 6Wohler C, Anlauf J K. Real-Time Object Recognition on Image Sequences with the Adaptable Time Delay Neural Network Algorithm-Applications for Autonomous Vehicles [J]. Image and Vision Computing, 2001,19(9 - 10) : 593-618.
  • 7郑林,韩崇昭,左东广,王永昌.基于多特征融合的运动目标识别[J].系统仿真学报,2004,16(5):1081-1084. 被引量:10
  • 8Zhao L, Thorpe C E. Stereo and Neural Network-Based Pedestrian Detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(3) : 148- 54.

二级参考文献3

  • 1Kass M, Witkin A, and Terzopoulos D. Snakes: Active Contour Models[J]. Int J. Computer Vision, 1988, 1(4): 321-331.
  • 2Lin CT. Neural-Network-Based Fuzzy Logic Control and Decision System[J]. IEEE Trans on Computer, 40(12): 1320-1336.
  • 3李人厚.智能控制理论与应用[M].西安:西安电子科技大学出版社,1999..

共引文献9

同被引文献93

引证文献11

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部