期刊文献+

关于一类新的上可嵌入图的研究

A New Class of Up-Embeddable Graphs
下载PDF
导出
摘要 讨论了由直径为3的无环图构造出的一类特殊图的上可嵌入性.通过给直径为3的重图加边,提供了一类新的上可嵌入图;进而给出了直径为2的无环图是上可嵌入的另一种证明. Through an operation of adding new edges on graphs tiple edges, we provide a new class of up-embeddable grqphs. graph of diameter two is up-embeddable. of diameter three which In addition, we proved may have multhat a loopless
出处 《北京交通大学学报》 CAS CSCD 北大核心 2008年第3期81-83,共3页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(10571013)
关键词 图论 最大亏格 上可嵌入 直径 亏数 graph theory maximum genus up-embeddability diameter Betti deficiency
  • 相关文献

参考文献8

  • 1Xuong N H. How to Determine the Maximum Genus of A Graph[J]. J. Combin. Theory(B), 1979,26:216-227.
  • 2Jungerment M. A Characterization of Up-embeddable Graphs[J]. Trans. Amer. Math. Soc, 1978,241:199- 203.
  • 3He W L, Liu Y P. A Note on the Maximum Genus of Graph G^3 [J]. Journal of System Science and Information, 2003,1(4) :615 - 619.
  • 4Bondy J, Murty U S. Graph Theory with Applications [M]. New York: London and Elsevier, 1976.
  • 5Liu Y P. Embeddability in Graphs[ M ]. Boston: Kluwer, 1995.
  • 6Nebesky L. A New Characterization of the Maximum Genus of A Graph[J]. Czechoslova Math. J., 1951,31 (106) :604 - 613.
  • 7Huang Y Q. Maximum Genus and Chromatic Number of Graphs[J]. Discrete Math., 2003,271 : 117 - 127.
  • 8Skoviera M. The Maximum Genus of Graphs Diameter Two[J]. Discrete Math, 1991,87:175-180.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部