摘要
自Namioka等人基于Asplund的开拓性工作,而提出Asplund空间的概念(即,其非空开凸子集的每个连续凸函数,均在其定义域内的一个稠密的G_δ-集上Fréchet可微的那样一类Banach空间)并证明了“Asplund空间的对偶空间具有Radon-Nikodym性质(RNP)”后,无限维空间上函数的可微性研究,便围绕着Asplund空间广泛而深入地展开(例如,见文献[3]和[4]).随着Stegall将Namioka-Phelps定理的逆定理成功给出,即“若一个Banach空间的对偶具有RNP,则该空间是Asplund空间”,使Asplund空间研究出现一个高潮.因为S-N-Ph特征定理将函数的微分理论、Banach空间几何学。
出处
《科学通报》
EI
CAS
CSCD
北大核心
1997年第20期2145-2147,共3页
Chinese Science Bulletin