期刊文献+

数字技术中图形原理的研究与应用 被引量:2

Research and Application of Graphics Principles in Digital Technology
下载PDF
导出
摘要 用卡诺图化简、分析逻辑函数具有简洁、直观等优点,但在多变量的数字技术研究中因图形的复杂性难以使用卡诺图分析方法。基于此,本文提出了数字逻辑图形原理,该原理仅依据数字逻辑函数的最简与或式的因子特征就可得出相对应的虚拟卡诺图特性,并给出其虚拟卡诺图的各卡诺圈彼此相隔、相交及相切的判断原理。本文还进一部研究了电路产生数字险象的虚拟卡诺图分析原理和解决方法。数字逻辑图形原理避免了多数字变量的卡诺图图形实际建立的复杂性,给多数字变量的卡诺图理论分析及应用提供了新的研究方法。 Analyzing the logical function with karnaugh map has the merits of brevity and intuition.In multivariable digital technology study,it is difficult to use the analytical procedure of karnaugh map because of the complexity of the graphics.The principle of digital logic graphics presented by this paper is based on digital logic function of the minimal and/or of the factors,which can conclude corresponding characteristic of dummy karnaugh map.And it also gives its karnaugh circles each other apart,intersection and tangency judgment principle.The paper also provides the principle of dummy karnaugh map and the principle of settling digital danger phenomenon on the circuit of dummy karnaugh map.The principle avoids the complexity of creating karnaugh map of multivariable variables,and it provides a new research technique and potential analysis and application of multivariable variables of karnaugh map theory.
作者 鲁顺昌 王芳
出处 《西华大学学报(自然科学版)》 CAS 2008年第4期1-2,12,共3页 Journal of Xihua University:Natural Science Edition
关键词 数字图形原理 虚拟卡诺图 分布规律 数字险象 digital graphics principle dummy karnaugh map regularity of distribution digital danger phenomenon
  • 相关文献

参考文献6

  • 1[1]Holder.M.E.A Modified Karnaugh Map Technique Education[J].IEEE,Trans,2005,48(1):206-207.
  • 2[2]Halder.A.K.Karnaugh Map Extended to Six or More Vaciables[J].Electronics letters 1992,18 (2):868-870.
  • 3[3]I-Ming,Tsai and Sy-Yen Kuo.Quantum Boolean Circuit Constractian and Layout under Locality Constraint[C]//the 1st IEEE Conference Nano technology,2001:111-116.
  • 4[4]Shiou-An Wang,Chin-Yung Lu,I-Ming Tsai,Sy-Yen Kuo.Modified Kamangh Map for Quantum Boolean Circuits Construction Nano Technology[C]//Third IEEE conference,2003:651-654.
  • 5[5]Tucker,J.H.,Tapia,M.A.Using Karnaugh Maps to Solve Boolean Equations by Successive Elimination[J].Seuthenstcon 92,Proceedings,IEEE 12-15 April,1992:589-592.IEEE.
  • 6陈新龙,胡国庆.逻辑函数卡诺图化简ICAI系统[J].重庆大学学报(自然科学版),2002,25(10):149-151. 被引量:4

二级参考文献5

共引文献3

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部