期刊文献+

多传感器时滞系统信息融合最优Kalman滤波器 被引量:6

Multi-sensor information fusion optimal Kalman filter for time-delay systems
下载PDF
导出
摘要 基于线性最小方差最优加权融合估计算法,对多传感器的离散线性状态时滞随机系统.给出了一种非增广分布式加权融合最优Kalman柚滤波器.推导了状态时滞系统任两个传感器子系统之间的滤波误差互协方差阵的计算公式.它与状态增广加权融合滤波器具有相同的精度.与每个传感器的局部滤波器相比,分布式融合滤波器具有更高的精度.与状态和观测增广最优滤波器相比,具有较小的精度,但避免了增广所带来的高维计算和大的空间存储。可减小计算负担.仿真例子验证了其有效性. Based on the optimal weighted fusion estimation algorithm with minimum variance, a non-augmentation distributed weighted fusion optimal Kalman filter is given for discrete linear state time-delay stochastic systems with multiple sensors. The cross-covariance matrix of filtering errors between any two-sensor subsystems is derived for state time-delay systems. It has the same accuracy with weighted fusion filter with state augmentation. Compared with local filter based on each sensor, the distributed fusion filter has higher accuracy. Compared with the optimal filter with state and measurement augmentation, it has lower accuracy, but avoids the high-dimension computation and the large memory by augmentation, and has the reduced computational burden. A simulation example also shows its effectiveness.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第3期501-505,共5页 Control Theory & Applications
基金 国家自然科学基金(60504034) 黑龙江省青年基金(QC04A01) 黑龙江省普通高等学校青年学术骨干支持计划资助项目(1151G035) 黑龙江大学杰出青年基金(JC200404).
关键词 状态时滞系统 多传感器 信息融合 最优Kalman滤波器 state time-delay system multisensor information fusion optimal Kalman filter
  • 相关文献

参考文献3

二级参考文献18

  • 1BAR-SHALOM Y. On the track-to-track correlation problem [J].IEEE Trans on Automatic Control, 1981,26 ( 2 ): 571 - 572.
  • 2HASHMIPOUR H R, ROY S, LAUB A J. Decentralized structures for parallel Kalman Filtering [ J ]. IEEE Trans on Automatic Control,1988,33(1) :88 - 93.
  • 3CARLSON N A. Federated square root filter for decentralised parallel processes [ J ]. IEEE Trans on Aerospace and Electronic Systems,1990,26(3) :517 - 525.
  • 4KIM K H. Development of track to track fusion algorithm [ C ]//Proc of American Control Conference. Troy: Rensselaer Polytechnic Institute, 1994:1037 - 1041.
  • 5CHEN H,KIRUBARAJAN T,BAR-SHALOM Y.Performance limits of track-to-track fusion versus. centralized estimation: theory and application [ J ]. IEEE Trans on Aerospace and Electronic Systems,2003,39 (2): 386 - 398.
  • 6SAHA R K. An efficient algorithm for multisensor track fusion [ J].IEEE Trans on Aerospace and Electronic Systems, 1998, 34 ( 1 ):200 - 210.
  • 7QIANG Gan, HARRIS C J. Comparison of two measurement fusion methods for Kalman-filter-based multisensor data fusion [J]. IEEE Trans on Aerospace and Electronic Systems ,2001,37( 1 ):273- 280.
  • 8BLOM H A P, BAR-SHALOM Y. The interacting multiple model algorithm for systems with Markovian Switching coefficients [ J ].IEEE Trans on Automatic Control, 1988,33(8): 780 - 783.
  • 9SUN S L. Multi-sensor optimal information fusion Kalman filter with application [ J ]. Aerospace Science and Technology, 2004, 8 ( 1 ):57 - 62.
  • 10SUN S L. Multi-sensor optimal information fusion Kalman filter for discrete multichannel ARMA signals [C] // Proc of 2003 IEEE Int Symposium Intelligent Control. Chicago: Institute of Electrical and Electronics Engineers Inc. ,2003:377- 382.

共引文献67

同被引文献50

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部