期刊文献+

一种云样本的控制产生及在电路故障诊断中的应用 被引量:3

A method of cloud-sample control and generation with application to circuit fault diagnosis
下载PDF
导出
摘要 为了选择电路故障诊断中的特征样本,提出了产生云样本的方法,并用于神经网络的训练和识别.首先采用逆向云理论对初始特征样本进行统计以获取数字特征,其次采用正向云理论产生扩展训练样本,并用新产生的样本训练两种神经网络.仿真结果表明,采用云样本训练的神经网络要比采用常规样本训练的性能稳健,具有较好的抗噪声性能,在模拟电路故障诊断中达到了较好的诊断效果. To select feature samples in circuit fault diagnosis, we propose a method of cloud-sample generation, and apply it to artificial-neural-network training and recognition. First, the inverse cloud model theory is employed to obtain the statistical digital feature of the samples, and then the extended training data set is produced by positive cloud theory. Second, two kinds of networks are trained with the newly produced data set. Simulation results reveal that the performance of the neural network trained by the cloud samples is better than that trained by the conventional methods. The results also proved that the network is robust to random noise, and the proposed method is valid in the faults diagnosis of analog circuit.
作者 崔江 王友仁
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第3期556-559,共4页 Control Theory & Applications
基金 国家自然科学基金(60374008 60501022) 航空科学基金(2006ZD52044) 南京航空航天大学青年基金(Y0521033).
关键词 云模型 特征样本 神经网络 故障诊断 cloud model feature samples neural network fault diagnosis
  • 相关文献

参考文献7

  • 1FENTON W G, MCGINNITY T M, MAGUIRE L P. Fault diagnosis of electronic systems using intelfigent techniques: a review[J]. IEEE Transactions on Systems, Man and Cybernetics, 2001, 31(3): 269 - 281.
  • 2AMINIAN E AMINIAN M, COLLINS H W. Analog fault diagnosis of actual circuits using neural networks[J]. IEEE Transactions on Instrumentation and.Measurement, 2002, 51(3): 544 - 550.
  • 3刘刚,张洪刚,郭军.不同训练样本对识别系统的影响[J].计算机学报,2005,28(11):1923-1928. 被引量:15
  • 4杨慧中,卢鹏飞,张素贞,陶振麟.网络泛化能力与随机扩展训练集[J].控制理论与应用,2002,19(6):963-966. 被引量:6
  • 5GEORGE N K. On over fitting, generalization, and randomly expanded training sets[J]. IEEE Transactions on Neural Networks, 2000, 11(5): 1050- 1057.
  • 6解培中,张志涌.一种新的用于故障诊断分类器的特征样本生成方法[J].系统工程与电子技术,2001,23(11):35-37. 被引量:1
  • 7KAMINSKA B. Analog and mixed-signal benchmark circuits-first release[C] //Proceedings of International Test Conference. Washington, DC: IEEE Press, 1997: 183- 190.

二级参考文献13

共引文献19

同被引文献31

  • 1Li, Ping, Yang, Guanghong.An adaptive fuzzy design for fault-tolerant control of MIMO nonlinear uncertain systems[J].控制理论与应用(英文版),2011,9(2):244-250. 被引量:10
  • 2Du, Zhenbin, Qu, Zifang.Improved adaptive fuzzy control for MIMO nonlinear time-delay systems[J].控制理论与应用(英文版),2011,9(2):278-282. 被引量:2
  • 3李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:899
  • 4Yuan Haiying Chen Guangju Xie Yongle.Feature evaluation and extraction based on neural network in analog circuit fault diagnosis[J].Journal of Systems Engineering and Electronics,2007,18(2):434-437. 被引量:16
  • 5Tan Yanghong, He Yigang, Cui Chun, et al. A novel method for analog fault diagnosis based on neural networks and genetic algorithms [J]. IEEE Transactions on Instrumentation and Measurement, 2008, 57(11): 2631-2639.
  • 6Hiroshi Toda, Zhang Zhong. Perfect translation invariance with a wide range of shapes of Hilbert transform pairs of complex wavelets[C]. Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing, 2007:.
  • 7Lohmarm A W, Mendlovic D, Zalevsky Z. Fractional Hilbert transform[J]. Optics Letters, 1996, 21: 281-283.
  • 8Soo Chang Pei, Min Hung Yeh, Chien Cheng Tseng. Discrete fractional fourier transform based on orthogonal projections[J]. IEEE Transactions on Signal Processing, 1999, 47(5): 1335-1347.
  • 9Soo Chang Pei, Min Hung Yeh. Discrete fractional Hilbert transform[J]. IEEE Transactions on Circuits and Systems- Ⅱ: Analog and Digital Signal Processing, 2000, 11(47): 1307-1311.
  • 10Chien Cheng Tseng, Soo Chang Pei. Design and application of discrete-time fractional Hilbert transformer[J]. IEEE Transactions on Circuits and Systems-Ⅱ: Analog and Digital Signal Processing, 2000, 12(47): 1529-1533.

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部