摘要
给出具有非线性时滞的双曲型微分方程定解问题2ut2=a(t)Δu+si=1ai(t)Δu(x,t-ρi(t))-f(x,t,u)-kj=1gj(x,t,u(x,t-σj)),u=0,(x,t)∈Ω×〔0,∞),其中(x,t)∈Ω×(0,∞)的解振动的几个充分条件.
Sufficient conditions are obtained for oscillation of solutions of a nonlinear delayed hyperbolic differential equations 2ut 2=a(t)Δu+si=1a i(t)Δu(x,t-ρ i(t))-f(x,t,u)-kj=1g j(x,t,u(x,t-σ j)),(x,t)∈Ω×(0,∞) with u=0,(x,t)∈Ω× 0,∞).
出处
《烟台师范学院学报(自然科学版)》
1997年第4期255-259,共5页
Yantai Teachers University journal(Natural Science Edition)
关键词
非线性
解
振动
双曲型方程
充分条件
nonlinear delayed,hyperbolic differential equations,oscillation of solutions