摘要
最近Koy提出一种质量优于LLL规约基的原-对偶规约基,但没有给出该规约基与最小元比值因子的上界和下界.本文首先分析了原-对偶规约基的性质,然后给出并证明了原-对偶规约基与连续最小元比值因子的上界和下界,最后用原-对偶规约基改进Babai的近似CVP算法——舍入算法,提高了其近似因子.
Recently Koy proposed primal-dual bases which have better quality than LLL-reduced bases in high-dimensional lattice,but his efforts did not take into account the low and upper bounds for the ratios of primal-dual bases to successive minima. In this paper some useful properties of Koy' s primal-dual bases are analyzed and then the low and upper bounds for the ratios of primal-dual bases to successive minima are introduced and proved.At the end, the Round-off algorithm for the approximate-CVP is improved using primal-dual bases and its result has a better approximation factor than L. Babai' s.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2008年第6期1124-1129,共6页
Acta Electronica Sinica
基金
国家863高技术研究发展计划(No.2006AA01Z450)
国防基础科研项目(No.C1120060497)
关键词
格
规约基
连续最小元
长度亏损
最近向量问题
lattice
reduced bases
successive minima
length defect
the closest vector problem(CVP)