期刊文献+

一类随机微分方程Runge-Kutta方法的指数稳定性 被引量:1

Exponential stability of Runge-Kutta methods for a class of stochastic differential equations
下载PDF
导出
摘要 为进一步研究随机微分方程的稳定性,给出了随机微分方程的二级Runge-Kutta方法的算法格式,研究了二级显式随机Runge-Kutta方法的均方稳定和指数稳定的条件,并证明了对于线性检验方程,均方稳定性和指数稳定性的关系. In order to research the stability of stochastic differential equations, the two-step Runge-Kutta methods for solving these equations are presented, and the mean square stability and exponential stability conditions of the methods are discussed. The relationship between the mean square stability and exponential stability for linear test equations is also provided.
机构地区 河海大学理学院
出处 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期430-432,共3页 Journal of Hohai University(Natural Sciences)
关键词 随机微分方程 RUNGE-KUTTA方法 均方稳定性 指数稳定性 线性检验方程. stochastic differential equation Runge-Kutta methods mean square stability exponential stability linear test equation
  • 相关文献

参考文献10

  • 1RUMELIN W.Numerical treatment of stochastic differential equations[J].SIAM J Numer Anal,1982,19:604-613.
  • 2SAITO Y,MITSUI T.Stability analysis of numerical schemes for stochastic differential equations[J].SIAM J Numer Anal,1996,33:2254-2267.
  • 3HIGHAM D J.Mean-square and asymptotic stability of the stochastic theta method[J].SIAM J Numer Anal,2000,38:753-769.
  • 4BURRAGE P M.Runge-Kutta methods for stochastic differential equations[D].Brisbane,Australia:the University of Queensland,1999.
  • 5TIAN T H,BURRAGE K.Two-stage stochastic Runge-Kutta methods for stochastic differential equations[J].BIT,2002,42:625-643.
  • 6BURRAGE K,BURRAGE P M.High strong order explicit Runge-Kutta methods for stochastic ordinary differential equations[J].Appl Numer Math,1996,22:81-101.
  • 7BURRAGE K,BURRAGE P M.Order conditions of stochastic Runge-Kutta methods by B-series[J].SIAM J Numer,Anal,2000,38:1626-1646.
  • 8SAITO Y,MITSUI T.T-stability of numerical scheme for stochastic differential equations[J].World Sci Ser Appl Anal,1993(2):333-344.
  • 9田增锋,魏跃春,胡良剑.随机微分方程Euler法的均方稳定性和指数稳定性[J].自然杂志,2002,24(6):369-370. 被引量:5
  • 10王洪珂.微分方程的指数稳定性[J].大学数学,2006,22(1):75-79. 被引量:1

二级参考文献3

  • 1Has'minskiǐ R Z.Stochastic stability of differential equations[M].Sijthoff & Noordhoff,1980.
  • 2彼得罗夫斯基ИГ.常微分方程论讲义[M].苏克欧译.北京:高等教育出版社,1957.
  • 3Kozin F.On almost sure asymptotic sample properties of diffusion processes defined by stochastic differential equations[J].J.Math Kyoto.Univ.1964/1965,16(4):515-528.

共引文献4

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部