期刊文献+

一类二阶偏微分方程初值问题粘性解的存在性 被引量:2

THE EXISTENCE OF THE VISCOSITY SOLUTIONS FOR THE INITIAL VALUE PROBLEM OF ONE TYPE OF SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS
下载PDF
导出
摘要 利用非线性算子半群理论,证明了二阶抛物型方程的初值问题的粘性解的存在性,其中u0(x)∈BUC(RN),F∈C(RN×S*(N)),且F是退化椭圆的. The proof of the existence of viscosity solution for the initial value problems of one type of second order parabolic partial differential equations is given by using the theory of nonlinear operator semigroups,where U0(x)∈BUC(RN), F∈C(RN×S*(N)) and F is degenerate elliptic.
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 1997年第4期453-456,共4页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金!2230206
关键词 粘性解 耗散算子 偏微分方程 存在性 初值问题 solution degenerate elliptic operator semigroup dissipative operator
  • 相关文献

参考文献2

  • 1陈亚浙,二阶椭圆型方程与椭圆型方程组,1991年
  • 2叶其孝,索伯列夫空间(译),1981年

同被引文献16

  • 1Crandall M G, Hitoshi, Lions P L. User's guide to viscosity solutions of second order partial differential equation[J]. Bull( New Series) Amer Maths Sox, 1992, 27 (1) :1 -65.
  • 2Crandall M G, Evens L C, Lions P L. Some properties of viscosity of Hamilton-Jacobi equations [ J]. Trans Amer Math Soc, 1984, 282(2) :487 -502.
  • 3Crandall M G, Lions P L. Viscosity of Hamilton-Jacobi equations[ J]. Trans Amer Math Soc, 1983, 277 (1) : 1 -42.
  • 4AIZICOVICI S,MCKIBBEN M.Existence results for a class of abstract nonlocal Cauchy problems[J].Nonlinear Analysis:Theory,Methods & Applications,2000,39 (5):649-668.
  • 5NGUEREKATA G M.A Cauchy problem for some fractional abstract differential equation with non local conditions[J].Nonlinear Analysis:Theory,Methods & Applications,2009,70 (5):1873-1876.
  • 6HWANG J,NAKAGIRI S.On Semi-linear second order Volterra integro-differential equations in Hilbert space[J].Taiwan Residents Journal of Mathematics,2008,12 (3):679-710.
  • 7HERN(A)NDEZ E.Existence of solutions to a second order partial differential equation with nonlocal condition[J].Electronic Journal of Differential Equations,2003,51:1-10.
  • 8VALERO J,KAPUSTYAN A.On the connectedness and asymptotic behaviour of solutions of reaction-diffusion systems[J].Journal of Mathematical Analysis and Applications,2006,323 (1):614-633.
  • 9GARC(I)A-FALSET J.Existence results and asymptotic behavior for nonlocal abstract Cauchy problems[J].Journal of Mathematical Analysis and Applications,2008,338 (1):639-652.
  • 10BYSZEWSKI L,ACKA H.Existence of solutions of a semilinear functional differential evolution nonlocal problems[J].Nonlinear Analysis:Theory,Methods & Applications,1998,34 (1):65-72.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部