期刊文献+

一类高阶微分方程解的渐近性质

Asymptotic Behavior of the Solutions of a Class Higher Order Linear Differential Equations
下载PDF
导出
摘要 研究了一类高阶微分方程y(n)+p(t)y′+q(t)y=0解的渐近性质,获得了该类方程非振动解的渐近性的充分条件。 This paper discusses the asymptotic behavior of non-oscillatory solutions of a class higher order linear differential equation y^(n)+p(t)y′+q(t)y=0 Some sufficient condition for the asymptotic behavior of non-oscillatory solutions of the equation are obtained.
作者 高正晖
出处 《衡阳师范学院学报》 2008年第3期8-10,共3页 Journal of Hengyang Normal University
关键词 高阶线性微分方程 非振动解 渐近性质 higher order differential equation non-oscillatory solution asymptotic behavior
  • 相关文献

参考文献5

二级参考文献13

  • 1侯新华,厉亚.二阶非线性泛函微分方程解的振动性与渐近性[J].湖南城市学院学报(自然科学版),2004,13(4):44-45. 被引量:15
  • 2李岳生.非线性微分方程解的界,稳定性和误差估计[J].数学学报,1962,(3):32-39.
  • 3[2]Wong P. J. Y. & Agarwal,R. P. Cscillatory behavior of solutions certain second order nonlinear differential equations [J]. J. Math. Anal. Appl, 1996(198): 337- 354.
  • 4[3]Wong. P. J. Y. & Agarwal. R. P. Oscillation theorems and existencs of positive monotone solutions for second order nonlinear difference equations [J]. Math Comput Modelling, 1995(21):63-68.
  • 5[4]Li, W. T. ,Oscillation of certain second order nonlinear differential equations [J]. J.. Math. Ahal. Appl, 1998(217): 1 - 14.
  • 6[5]Ch,P. Phlios,and I. K. Pumaras,Oscillation in superlinear nonlinear differential equations of second order [J]. J. Math. Anal. Appl, 1992(165):1-11.
  • 7[6]C. G. Phlios. Oscillation theorems for linear differential equations of second order[J]. Arch. Math, 1989(53) :482-489.
  • 8R Greaf, P W Spikes. On the oscillatory of second order non-linear differential equations[J]. Czechoslovak Math J, 1986 (36) :275-284.
  • 9燕居让.常微分方程振动理论[M].太原:山西教育出版社,1982..
  • 10Mingshu Peng,Weigao Ge A. Correction on the oscillatory behavior of solutions of certain second order nonlinear differential equations[J]. J Math Appl,1999(104):207-215.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部