期刊文献+

形状优化中基于物理模拟的参数化方法 被引量:4

A New Approach to Parameterization Based on Physical Simulation for Shape Optimization
下载PDF
导出
摘要 提出了一个同时改变多个控制点和权因子的NURBS曲线形状修改方法.该方法用物理方法对齐次坐标系中NURBS曲线的控制多边形进行运动模拟,运用有限元法求解模拟系统的振动模态,并将NURBS的控制点和权因子映射到模态坐标系,然后根据模态坐标控制NURBS的形状.在形状优化中,这种方法可以减少设计变量,防止边界形状奇异. A new method is described which provides the shape modification of NURBS involving simultaneous alteration of control points and weights. The movement of the control polygon of NURBS in the homogeneous coordinate system is simulated by a physical frame structure, and the vibration modes of the physical system are calculated by finite element method. The control points and weights of NURBS are mapped into the mode coordinate system, and the shape of NURBS is to be controlled according to the mode coordinates. It is shown that by the present method, the number of design variables can be reduced and boundary shape singularity can be avoided during shape optimization.
作者 王学林 周济
出处 《华中理工大学学报》 CSCD 北大核心 1997年第11期27-30,共4页 Journal of Huazhong University of Science and Technology
关键词 形状优化 NURBS CAD 物理模拟 参数化法 shape optimization finite element method NURBS
  • 相关文献

参考文献2

  • 1Au C K,CAD,1995年,27卷,2期,85页
  • 2Yang R J,Tansaction of ASME Jnal of Mechanisms Tansmission and Automation in Design,1985年,107卷,3期,334页

同被引文献20

  • 1顾元宪,程耿东.结构形状优化设计数值方法的研究和应用[J].计算结构力学及其应用,1993,10(3):321-335. 被引量:32
  • 2中国机械工程学会材料学会.齿轮的失效分析[M].北京:机械工业出版社,1992..
  • 3陈秀宁.机械优化设计[M].杭州:浙江大学出版社,1999..
  • 4隋允康 钟万勰 钱令希.杆-膜-梁组合结构优化的DDDU-2程序系统.大连工学院学报,1983,22(1):21-36.
  • 5TARRAGO J A, CANALEST J. CODISYS: An integrated system for optimal structural design[J]. Comput Struct, 1994, 52(6): 1221-1241.
  • 6IMAN M H. Three-dimension shape optimization[J].Int J Num Meth Eng, 1982, 18: 661-673.
  • 7HAFTKA R T. Structural shape optimization-a survey[J]. Comput Meth Appl Mech Eng, 1986, 57: 91-106.
  • 8ZHANG W H, BECKERS P, FLEURY C. A unified parametric design approach to structural shape optimization[J]. Int J Num Methods Eng, 1995, 38:2283-2292.
  • 9ZHANG W H, DOMASZEWSKI M, FLEURY C. An improved weighting method with multibounds formulation and convex programming for multicriteria structural optimization [J]. Int J Numer Meth Engng,2001, 52: 889-902.
  • 10ZHANG W H. YANG H.C. A study of the method for a certain type of multicriteria structural optimization problems[J]. Int J of Computers & Structures,2001,79: 2741-2749.

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部