摘要
对于黎曼流形M,M′,证明了:如果对3个独立的p值有specp(M)=specp(M′),那么∫Mr2*1=∫M′r′2*1,∫M‖Ric‖2*1=∫M′‖Ric′‖2*1,∫M‖Riem‖2*1=∫M′‖Riem′‖2*1.
Let M and M′ be two Riemann manifolds. If spec p(M)= spec p(M′) for some p, then which geometrical properties of M and M′ are the same? This paper discusses this problem and proves that if spec p(M)= spec p(M′) for three independent values of p, then ∫ Mr 21=∫ M′ r′ 21, ∫ M‖ Ric ‖ 21=∫ M′ ‖ Ric′ ‖ 21 and ∫ M‖ Riem ‖ 21=∫ M′ ‖ Riem′ ‖ 21.
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1997年第4期398-400,共3页
Journal of Central China Normal University:Natural Sciences
关键词
黎曼流形
谱不变量
曲率张量
Riemann manifold
spectral invariant
curvature tensor