摘要
设E是自反的Banach空间且具弱连续正规对偶映像J:E→E*,C E是非空闭凸集.{T(t):t∈R+}:C→C的非扩张半群,且F(T(t))≠φ,f:C→C的弱压缩映像,在{αn},{tn}满足一定的条件下,若{xn}是由(1.3)和(1.4)式分别定义的迭代序列,则xn→q∈F(T(t)),(n→∞),且q是变分不等式的惟一解:〈(f-I)q,j(x-q)≤0,x∈F.
Let E be a real reflexive Banach space which admits a weakly sequentially continuous duality mapping from E to E^* ,and C be a nonempty closed convex subset of E.Let {T( t):t∈R^+ }: C→C be a nonexpansive group such that F ( T ( t ) ) ≠ and f: C→C be a weakly contractive mapping, when { an}, {tn} satisfy some appropriate conditions, the two iterative processes were defined (1.3) and (1.4), thenxn→p ∈ F( T(t) ), (n→∞),which is the unique solution in F to the following variational inequality: ( (f - I) q ,j( x - q ) ) ≤0, x ∈ F( T) .
出处
《成都大学学报(自然科学版)》
2008年第2期112-115,共4页
Journal of Chengdu University(Natural Science Edition)
基金
重庆市教委课题基金资助(No.030809)
关键词
不动点
非扩张半群
弱压缩
BANACH空间
fixed point
nonexpansive group
wealy contractive mapping
Banach space