期刊文献+

一些包含第二类中心阶乘数的求和公式

Some Summation Formulas Involving Central Factorial Numbers of the Second Kind
下载PDF
导出
摘要 本文建立了一些包含第二类中心阶乘数的求和公式. In this paper,we establish some summation formulas involving central factorial numbers of the second kind.
出处 《惠州学院学报》 2008年第3期33-36,共4页 Journal of Huizhou University
基金 广东省自然科学基金(05005928)
关键词 第二类中心阶乘数 EULER数 BERNOULLI数 the central factorial numbers of the second kind Euler numbers Bernoulli numbers
  • 相关文献

参考文献4

二级参考文献28

  • 1Ra R S,Indian J Pure Appl Math,1986年,17卷,1175页
  • 2Zhang Wenpeng,Fibonacci Quarterly,1998年,36卷,2期,154页
  • 3Guy R. K., Unsolved problem in number theory (Second ed.), translated by Zhang Mingyao, Beijing: Science Press, 2003, 132-133 (in Chinese).
  • 4Ke Z., Sun Q., Lectures on number theory (Second ed.), Beijing: Higher Education Press, 2001, 96-97 (in Chinese).
  • 5Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher Transcendental Functions, Vol. I, McGraw-Hill Book Company, New York, 1953
  • 6Luke, Y. L.: The Special Functions and Their Approximations, Vol. I, Academic Press, New York and London, 1969
  • 7Srivastava, H. M., Choi, J.: Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001
  • 8Srivastava, H. M.: Some formulas for the Bernoulli and Euler polynomials at rational arguments. Math. Proc. Cambridge Philos. Soc., 129, 77-84 (2000)
  • 9Srivastava, H. M.: Some simple algorithms for the evaluations and representations of the Riemann zeta function at positive integer arguments. J. Math. Anal, Appl., 246, 331-351 (2000)
  • 10Srivastava, H. M., Pinter,A.: Remarks on some relationships between the Bernoulli and Euler polynomials. Appl. Math. Lett., 17, 375-380 (2004)

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部