摘要
研究三阶差分系统边值问题Δ3ui(k)+λhi(k)fi(u1(k),u2(k),…,un(k))=0,k∈[0,T],ui(0)=ui(1)=ui(T+3)=0,i=1,2,…,n.若令f0=sum from i=1 to n lim‖u‖→0 fi(u)/‖u‖且f∞=sum from i=1 to n lim‖u‖→∞ fi(u)/‖u‖,则在f0=0且f∞=∞,或者f0=∞且f∞=0的情况下,运用不动点指数理论证明对于所有的λ>0,上述系统存在一个正解.
The boundary-value problem of third-order difference system △^3ui(k)+λhi(k)fi(u1(k),u2(k),…,un(k))=0,k∈[0,T],ui(0)=ui(1)=ui(T+3)=0,i=1,2,…,n was studied.Let f^0=∑i=1↑nlim||u||→0fi(u)/||u|| and f^∞=∑i=1↑nlim||u||→∞fi(u)/||u|| Then, by using the theory of fixed point index, it was verified that for all λ〉0, the above system would possess a positive solution if f^0=0 and f^∞=∞,or f^0=∞ and f^∞=0
出处
《兰州理工大学学报》
CAS
北大核心
2008年第3期147-150,共4页
Journal of Lanzhou University of Technology
关键词
离散边值问题
正解
存在性
discrete boundary-value problem
positive solution
existence