期刊文献+

基于分布式抗差最小二乘法的状态估计 被引量:4

State Estimation with the Least Robustness Square Method Based on Distribution
下载PDF
导出
摘要 针对电力系统互联的必然趋势,在研究传统算法和分布式算法的基础上,提出了基于结构和电压等级分布的组合分布式状态估计算法,建立了相应的数学模型。抗差估计理论主要研究抗拒少量粗差对估值的影响。拓扑错误和坏数据可以分别看作带有粗差的网络参数和量测数据,因此可以将抗差最小二乘法用于存在拓扑错误和坏数据时的状态估计。算例结果表明,基于分布式的抗差最小二乘法具有良好的抗粗差能力和收敛可靠性,并且收敛速度快。 The interconnection of power systems is an inevitable trend with the development of future power system, correspondingly. Based on traditional arithmetic and distributing arithmetic, this thesis puts forward the combined distributed state estimation method based on the distribution of structure and voltage grades and establishes the corresponding math model. Robustness square estimation theory pays much attention to the influence of little outlier resistance to estimation. Since topology errors and bad data can be considered as network parameters with outlier and measured data separately, the least robustness square method can be used in state estimations with topology errors and bad data. As shown in the results of calculation examples, the least robustness square method has favorable outlier resistance, convergence reliability and high convergence speed.
出处 《东北电力大学学报》 2008年第1期60-66,共7页 Journal of Northeast Electric Power University
关键词 电力系统 分布式状态估计 抗差加权最小二乘法 Power Systems Distributed State Estimation Least Robustness Square Method
  • 相关文献

参考文献6

  • 1赵亦明,滕福生.电力系统状态估计的快速计算方法[J].成都科技大学学报,1994(3):45-51. 被引量:1
  • 2于尔铿.电力系统状态估计[M].北京:水利电力出版社,1995..
  • 3周江文 黄幼才 等.抗差最小二乘法[M].武汉:华中理工大学出版社,1995..
  • 4[5]K.Seidu and H.Mukai.Parellel Multi-Area State Estimation.IEEE Trans on PAS,1985,vol-104(5):1026~1034.
  • 5[6]A.Abur and P.Tapadiya.Parallel State Estimation Using Multi-processors.Electrical Power System Research,1990,vol.18,67~79.
  • 6[7]Reza Ebrahimian and Rosa Baldick.State Estimation Distributed Processing.IEEE Transaction on Power System,2000,vol.15(4):1240~1246.

二级参考文献1

  • 1滕福生,调度自动化及信息管理系统,1987年

共引文献8

同被引文献48

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部