期刊文献+

3-RRR平面并联微动机器人的运动学分析 被引量:5

Kinematic Analysis of a 3-RRR Plane Parallel Micro-motion Robots
下载PDF
导出
摘要 运动学分析是并联机器人机构分析中的首要问题,是进行机构动力学分析、精度分析的基础,而全柔性微动机器人机构的首要目标就是精确实现所需的运动。因此对其运动学的研究在机构学领域占有重要的地位。本文对平面并联微动机器人进行了建立伪刚性模型,采用闭环矢量原理建立理论运动学线性模型,得到理论Jacobian矩阵,其次对该机构进行实验分析,得到工作平台的实验输出位移和方位角(Jacobian矩阵);然后用ANSYS软件对其进行有限元分析,得到有限元运动学模型(Jacobian矩阵值),最后通过分析比较该机构的理论运动学方程、实验运动学方程和有限元运动学方程,得到输出平台适用的运动学方程。 We present a method for deriving a linear and effective kinematic model based on loop closure theory. This method is illustrated with a parallel micro-moving flexure joint robot. An experiment is carried out to obtain the positions and orientation of the end-effector. Then the finite element analysis with ANSYS software is performed, and the finite element kinematics model (Jacobian matrix value) is obtained. Finally, the suitable end-effector kinematic equation is obtained by comparing the theoretic kinematics equation, the experimental kinematics equation and the finite element kinematics equation.
机构地区 华东交通大学
出处 《机械科学与技术》 CSCD 北大核心 2008年第6期770-773,共4页 Mechanical Science and Technology for Aerospace Engineering
关键词 并联机器人 微动机器人 有限元分析 运动学模型 parallel robots micro-motion robots finite element analysis kinematic model
  • 相关文献

参考文献6

二级参考文献12

  • 1Her I, Chang J C. A linear scheme for the displacement analysis of micropositioning stages with flexure hinges [J]. Transactions of the ASME, Journal of Mechanical Design, 1994,116 (3): 770-776.
  • 2HerI. Methodology for Compliant Mechanism Design [D]. Purdue University, 1986.
  • 3Midha A, Norton T W, Howell L L. On the nomenclature, classification, andabstraetionsofcompliantmechanisms [J]. Transactions of the ASME, Journal of Mechanical Design. 1994,116(1): 270-279.
  • 4Howell L L, Midha A. A method for the design of compliant mechanisms with small-length flexural pivots [J]. Transactions of the ASME, Journal of Mechanical Design. 1994,116 (1): 280-290.
  • 5Zou J, Watson L G, Zhang W J. On the comparison of the pseudo rigid body model method and the finite element method for a 3DOF planar micro-motion stage [C]. Proceedings of DETC′00,Baltimore, Maryland, 2000.
  • 6Yong Y K,Lu Tien-Fu,Handley D.Loop Closure Theory in Deriving a Linear and Simple Kinematic Model for a 3 DOF Parallel Micro-motion System[J].the SPIE's International Symposium on Microelectronics,2003,12:10-12.
  • 7张锋科技.ANSYS有限元分析实用教程.清华大学出版社,2005.
  • 8W J Zhang,J Zou,G Watson.Constant-Jacobian Method for Kinematics of a 3-DOF Planar Micro-Motion Stage[J].Journal of Robotic Systems,2002,19(2):63-79.
  • 9Daniel C Handley.A simple and efficient dynamic modelling method for compliant micropositioning mechanisms using flexure hinges[A].Device and Process Technologies for MEMS,Microelectronics,and Photonics Ⅲ,Proceedings of SPIE[C],Perth,Australia,2004,5276:67-76
  • 10Jae W,Ryu D G,Kee S M.Optimal design of a flexure hinge based Xyθ water stage[J].Precision Engineering,1997,21:18-28

共引文献17

同被引文献44

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部