期刊文献+

基于Rough集从临床数据中提取诊断规则 被引量:3

Mining Diagnostic Rules From Clinical Databases Based on Rough Sets
下载PDF
导出
摘要 在医学上,没有正确的诊断就没有正确的治疗。本文提出用简化的分明矩阵方法对临床数据信息表属性约简,并在此基础上提出相应分类和合并诊断规则生成算法。通过对该数据集测试表明,此算法是可行有效的,并缩短了诊断规则长度,有时还能为病人节省不必要的检查。 No well diagnose no well cure in medical science. This article put forward a method that reduction of attributes using the simplification of discernible matrix on the clinical database, and then use correspond induction of classification rules and the algorithm for diagnose rule integration. The algorithm has been proved feasible and effective after test the database, it would simplify the rules and cut some examination sometimes.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2008年第2期193-197,共5页 Journal of Nanchang University(Natural Science)
关键词 ROUGH集 属性约简 粗糙包含 诊断规则 rough sets reduction of attributes rough inclusion diagnostic rules
  • 相关文献

参考文献11

二级参考文献61

  • 1蓝春生,蓝鹏,曹煜媛.医学影像综合处理与外科策划[J].中国体视学与图像分析,2001,6(3):171-174. 被引量:1
  • 2吴萍,黄勇.基于CBR的心电图诊断系统设计[J].计算机应用与软件,2005,22(2):48-49. 被引量:1
  • 3[1]M. Berry and G. Linoff, Data Mining Techniques ,John Wiley, 1997
  • 4[2]Dorian Pyle,Data Preparation for Data Mining,Morgan Kaufmann, 1999
  • 5[3]Vasant Dhar and Roger Stein, Seven Methods for Transforming Corporte Data into Business Intelligence ,Prentice Hall 1997
  • 6[4]U. Fayyad et al. Advances in Knowledge Discovery and Data Mining,MIT Press, 1996
  • 7[5]S.A. Landis, T. Murray, S. Bolden, and P. A.Wingo, Cancer J. Clinicians, vol. 49, pp. 8- 31,1999.
  • 8[6]C. Westphal and T. Blaxton, Data Mining Solutions, John Wiley, 1998
  • 9[7]Pawlak Z, Grzymala- Busse J, Slowinski R, et al. Rough sets. Communications of the ACM,1995,38(11) :88-95
  • 10[8]Z. Pawlak,Rough Sets:Theoretical Aspects of Reasoning About Data. Boston, MA: Kluwer,1991

共引文献413

同被引文献24

  • 1张华伟,王明文,甘丽新.基于随机森林的文本分类模型研究[J].山东大学学报(理学版),2006,41(3):5-9. 被引量:58
  • 2钱晓东.数据挖掘中分类方法综述[J].图书情报工作,2007,51(3):68-71. 被引量:28
  • 3刘清.Rough集及Rough推理[M].北京:科学出版社,2001..
  • 4Breiman L. Random forests [ J]. Machine Learning,2001, 45 ( 1 ) :5-32.
  • 5Berk R A. Random Forests ] EB/OL]. [2013-06-11 ]. http ://link. springer. com/search? query = Random + Forests.
  • 6Satford Systems. What are tile advantages of RandomForests? [ EB/OL]. [2013-06-11 ]. http://www.salford-systems. corn/en/products/randomforests/faqs/item/134-what- are-the-advantages-of-randonfforests?.
  • 7Liu Miao, Wang Mingjun, Wang Jun, et al. Comparison of random forest, support vector machine and back propaga- tion neural network for electronic tongue data classification:Application to the recognition of orange beverage and Chinese vinegar [ J]. Sensors and Actuators B : Chemical, 2013, 177.970-980.
  • 8Zdzislaw Pawlak. Rough sets [ J ]. International Journal of Computer and Information Science, 1982, 11 (5) : 341- 356.
  • 9Yao Yiyu, Zhao Yan. Discernibility matrix simplication for con-structing attribute reducts [ J ]. Information Sciences, 2009,179 (7) : 867-882.
  • 10Yeh C C, Lin Fengyi, Hsu C C. A hybrid KMV model, random forests and rough set theory approach for credit rating [ J ]. Knowledge-Based Systems,2012,33,166-172.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部