期刊文献+

Lie群上的最速下降算法

Steepest Descent Algorithm on Lie Groups
下载PDF
导出
摘要 通过对Lie群及其Lie代数的基本性质及特殊结构的分析,提出了求解一般Lie群上优化问题的最速下降算法,并对算法的收敛性作了一定的分析.得到了该算法全局收敛的两个充分条件,并在一般框架下证明了该算法至少线性收敛.通过上Riemann质心的计算问题,证明该算法可行有效. Through analyzing special properties and structures of Lie group and its Lie algebra, a new steepest descent algorithm on Lie groups is developed. The convergence of the proposed algorithm is analyzed and achieve two sufficient conditions for the global convergence. Moreover, this paper proves that this algorithm is at least linearly convergent under the general framework. In order to show the feasibility and validity, the spacial rotation group is selected as the experimental subject.
出处 《湖北民族学院学报(自然科学版)》 CAS 2008年第2期135-140,145,共7页 Journal of Hubei Minzu University(Natural Science Edition)
基金 国家自然科学基金项目(10531030)
关键词 LIE群 LIE代数 下降方向 收敛 Lie group Lie algebra descent direction convengence
  • 相关文献

参考文献16

  • 1X Pennec, P Fillard, N Ayache. A Riemannian framework for tensor computing[ J ]. International Journal of Computer Vision, 2006, 66( 1 ) : 41 -66.
  • 2Y Han. Newton type algorithm on Riemannian manifolds applied to robot vision, and suggestions for improvement of its performance[ J ]. IEE Proceedings Vision, Image & Signal Processing, 2005,152 ( 3 ) : 275 - 282,
  • 3N Prabhu, H Chang, M Deguzman. Optimization on Lie manifolds and pattern recognition[ J ]. Pattern Recognition, 2005, 38:2286 -2300.
  • 4MD Plumbley. Lie group methods for optimization with orthogonality constraints[ J ]. Lecture Notes in Computer Science, 2004, 3195:1245 -1252.
  • 5MJ Prentice, Fitting smooth paths to rotation data[ J ], Applied Statistics, 1987,36 ( 3 ) :325 - 331.
  • 6RE Mahony,JH Manton. The geometry of the Newton method on non - compact Lie groups[J]. Journal of Global Optimization, 2002,23:309 - 327.
  • 7D Groisser. Newton's method,zeroes of vector fields,and the Riemannian center of mass[J]. Advanced in Applied Mathematics,2004,33 ( 1 ) :95 - 135.
  • 8K Hilper,J Trumpf. Newton -like methods for numerical optimization on manifolds[ C ]. Canberra, Australia: IEEE Conference on Signals, Systems and Computers,2004,1 : 136 - 139.
  • 9ML Curtis. Matrix Groups[ M]. New York:Springer - Verlag, 1979.
  • 10OK Frank. MT Chu. KR Driessel. The projected gradient method for least squares matrix approximations with spectral constraints[J]. SIAM Journal of Numerical Analysis,1990,27(4) :1050 - 1060.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部