期刊文献+

有限域F_(p^2)上原根计算的改进

Extenstion of Computing Primitive Roots of a Finite Field F_(p^2)
下载PDF
导出
摘要 从有限域Fp的原根出发有一个求Fp2的原根的算法,这个算法共含三大步.研究并简化了第三步,使得运算量为已有最快算法的2/3或有数量级的减少不等. There is an algorithm for finding primitive roots of a finite field Fp^2 from primitive roots of the finite field Fp. The algorithm contains three main steps. This paper simplifies the third step which makes the arithmetic labor two thirds of or magnitude - order less than that of addressed fastest third step.
出处 《湖北民族学院学报(自然科学版)》 CAS 2008年第2期159-161,共3页 Journal of Hubei Minzu University(Natural Science Edition)
基金 863计划项目(2001AA141010)
关键词 有限域 原根 运算量 finite field primitive root arithmetic labor
  • 相关文献

参考文献8

  • 1Miller V. Uses of elliptic curves in cryptography [ A ]. Advances in Cryptology - Cryto85 [ C ]. Santa Barbara, Calif: Springer - verlag, 1986:417 - 426.
  • 2Koblitz N. Elliptic curve cryptosystems[ J ]. Mathematics of Computation, 1987,48:203 - 209.
  • 3Atkin A O L,Morain F. Flliptic curves and primality proving[J]. Mathematics of Computation,1993,61 (203) :29 -68.
  • 4Schoof R. Counting points on elliptic curves over finite fields[J]. Jonmal de Theorie des Nombers de Bordeaux,1995,7:219 -254.
  • 5霍家佳,张起帆.关于有限域F_(p^2)上的原根[J].四川大学学报(自然科学版),2003,40(3):447-452. 被引量:4
  • 6孙翠芳.关于有限域F_p^2上的原根求法的注记[J].四川大学学报(自然科学版),2005,42(1):23-26. 被引量:4
  • 7Zhang Zhen - xiang. Finding finite//2 - sequences with large rn - a^1/2m [ J]. Mathematics of Computation, 1994,63:403 -414.
  • 8廖群英.有限域F_q^n上原根的充分必要条件[J].四川师范大学学报(自然科学版),2005,28(2):134-137. 被引量:3

二级参考文献16

  • 1Schoof R. Counting points on elliptic curves over finite fields[J]. Journal de Theorie des Nombem de Bordeaux, 1995,7: 219-254.
  • 2Lidl R, Niederreiter H. Finite Fields[ A]. Encycl. of Math. and Its Appl[ C]. Vol. 20, Addison-Wesley, Reading Mass,1983.
  • 3Zhang Zhen-xiang. Finding finite B2-sequences with large m - am^1/2[J]. Mathematics of Computation, 1994, 63:403 -414.?A
  • 4Cohen H. A course in computational algebraic number theory (GTM 138)[M]. Berlin:Springer-Verlag, 1996.
  • 5Rosen K H. Elementary number theory and its applications[M]. Massachusetts:Addison Wesley, 1984.
  • 6Zhang Zhen-xiang. Using Lucas sequences to factor large integers near group orders[J]. The Fibonacci Quarterly, 2001, 39(3) :228 - 237.
  • 7Zhang Zhen-xiang. Finding strong pseudoprimes to several bases[J]. Mathematics of Computation, 2001, 70(234) :863 -872.
  • 8柯召 孙琦.数论讲义[M].北京:高等教育出版社,1986.226-227.
  • 9Lidl R, Niederreiter H. Finite Fields[M]. MA:Addison Wesley,1983.
  • 10廖群英 孙琦.关于有限域上原根的分布,北京邮电大学学报[M].,2004,27(4).28-30.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部