期刊文献+

非平坦时空中相对论性的玻色子和费米子 被引量:1

Relativistic bosons and fermions in non-flat space-time
下载PDF
导出
摘要 在背景度规ds2=u2(x)(-dt2+dx2)+dy2+dz2下,本文研究相对论性的玻色子和费米子,得出了相应于Klein-Gordon方程和Dirac方程的连续性方程.当u(x)是奇函数时,体系的哈密顿算符^H具有空间反演不变性,宇称守恒.对于特殊情况u(x)=ex,计算出了玻色子和费米子的本征波函数. In the presence of a background metric ds^2=u^2(x)(-dt^2+dx^2)+dy^2+dz^2,relativistic bosons and fermions have been studied and continuity equations for the Klein- Gordon and Dirac equations have been got respectively. It is shown that parity conservation is verified for the Hamiltonian system operatorI:twith inversion space invariance for the case u(-x) = -u(x). For the special case u(x) =e^x ,the eigenfunctions of bosons and fermions are obtained.
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 2008年第2期211-214,共4页 Journal of Central China Normal University:Natural Sciences
基金 湖北省杰出青年基金资助项目(080071)
关键词 几率流守恒 宇称守恒 非平坦时空 probability current conservation parity conservation non-flat space-time
  • 相关文献

参考文献9

  • 1Nesvizhevsky V V, Protasov K V. Quantum states of neutrons in the earth' s gravitational field[J]. Nature, 2002, 415: 297-299.
  • 2Varju K, Ryder L H. The effect of Schwarzschiid field on Spin 1/2 particles compared to the effect of a uniformly accelerating frame[J]. Phys Lett A, 1998, 250: 263-269.
  • 3Weinberg S. Gravitation and Cosmology[M]. New York: Wiley, 1972.
  • 4Chandrasekhar S. The solution of dirac's equation in kerr geometry[J]. Proc R Soc Lond A, 1976, 349: 571-575.
  • 5Chandrasekhar S. The Mathematical Theory of Black Holes [M]. Oxford: Oxford University Press, 1992.
  • 6Chakrabarti S K. On mass-dependent spheroidal harmonics of spin one-half[J]. Phys R Soc Lond A, 1984, 391: 27-38.
  • 7Mukhopadhyay B, Chakrabarti S K. Semi-analytical solution of dirac equation in schwarzschild geometry[J]. Class Quant Gray, 1999, 16:3 165-3 181.
  • 8Page D N. Dirac equation around a charged, rotating black hole[J]. Phy Rev D, 1976, 14:1 509-1 510.
  • 9Lewis H Ryder. Quantum Field Theory[M]. Cambrigde: Cambridge University Press, 1985.

同被引文献8

  • 1Peskin M E, Schroeder V D. An Introdaction to Quantum Field Theory[M]. Beijing: World Publishing Crop, 2006.
  • 2Battistel O A, Dallabona G. A systematization for one-loop 4D Feynman integrals[J]. Eur Phys J C, 2006,45:721-743.
  • 3Stelle K S. Gauss-Bonnet type identity in Weyl-Cartan space [J]. Phys, 1976,16: 953-957.
  • 4Weinberg S. Gravitation and Cosmology[M]. New York: Wiley, 1972.
  • 5Ryder L H. Quantum Field Theory [M]. Cambridge: Cambridge University Press, 1985.
  • 6代熠,明钢.介质中的Minkowski动量的守恒[J].华中师范大学学报:自然科学版,2011,42(2):211-214.
  • 7邵亮,李苗,秦正辉,韩金柱,邵丹.五维时空中度规的计算[J].物理学报,2010,59(6):3700-3703. 被引量:2
  • 8邵丹,邵亮,邵常贵.一种空时体积与引力的激发和跃迁生成模式[J].物理学报,2011,60(12):44-48. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部