摘要
在背景度规ds2=u2(x)(-dt2+dx2)+dy2+dz2下,本文研究相对论性的玻色子和费米子,得出了相应于Klein-Gordon方程和Dirac方程的连续性方程.当u(x)是奇函数时,体系的哈密顿算符^H具有空间反演不变性,宇称守恒.对于特殊情况u(x)=ex,计算出了玻色子和费米子的本征波函数.
In the presence of a background metric ds^2=u^2(x)(-dt^2+dx^2)+dy^2+dz^2,relativistic bosons and fermions have been studied and continuity equations for the Klein- Gordon and Dirac equations have been got respectively. It is shown that parity conservation is verified for the Hamiltonian system operatorI:twith inversion space invariance for the case u(-x) = -u(x). For the special case u(x) =e^x ,the eigenfunctions of bosons and fermions are obtained.
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
2008年第2期211-214,共4页
Journal of Central China Normal University:Natural Sciences
基金
湖北省杰出青年基金资助项目(080071)
关键词
几率流守恒
宇称守恒
非平坦时空
probability current conservation
parity conservation
non-flat space-time