期刊文献+

非均衡失效成本条件下的统计过程调整技术研究 被引量:2

Statistical process adjustment technique on condition of asymmetric off-target cost
下载PDF
导出
摘要 为解决统计过程调整问题,建立了统计过程调整问题模型,采用公差设计和参数设计中的非均衡失效成本作为过程调整的评价指标,构建了过程方差参数未知和已知条件下的过程参数估计贝叶斯模型,进而构建了相应的质量特性值的预测模型。根据非均衡失效成本函数和质量特性值的预测模型,确定了过程每一步的最优控制目标,并根据控制目标完成过程调整。最后,在非均衡失效成本条件下,通过与格鲁布斯基本准则调整方法和马尔可夫链蒙特卡罗调整方法的对比,验证了本文中调整方法的性能优势。 After deeply studying the problem of Statistical Process Adjustment (SPA), a process adjustment model was set up. Asymmetric off-target cost was used as the performance evaluation index of adjustment methods which was used in tolerance design and parameters design but not in SPA yet. Different Bayesian models were constructed with known and unknown information in the process variance, and then the prediction model of the quality characteristica was constructed. According to the Bayesian models and prediction model, the optimal control targets for each step were defined and the target adjustments were also performed. Finally, by comparing with Grubbs basic rule adjustment approach and Markov Chain Monte Carlo (MCMC) adiustment approach on condition of asymmetric offtarget cost, the performance advantages of the proposed approach were confirmed.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2008年第6期1168-1174,1181,共8页 Computer Integrated Manufacturing Systems
基金 国家863/CIMS主题资助项目(2003AA411110 2007AA04Z187)。~~
关键词 统计过程调整 非均衡失效成本 贝叶斯模型 预测模型 态变数 逼近式搜索算法 statistical prOcess adjustment asymmetric off-target cost Bayesian model predictive model state variable asymptotic searching algorithm
  • 相关文献

参考文献9

  • 1TRIETSCH D. Process setup adjustment with quadratic loss [J]. IIE Transactions,2000,32(4) : 299-307.
  • 2DEL CASTILLO E, PAN R, COLOSIMO B M. Small sample comparison of some process adiustment methods[J]. Communications in Statistics, Simulation and Computation, 2003,32 (3): 923-942.
  • 3PATEL N S, JENKINS S T. Adaptive optimization of run-to- run controllers: the EWMA example[C]. IEEE Transactions on Semiconductor Engineering. 2000,13(1) : 97-107.
  • 4褚崴,于晓义,孙树栋.基于马尔可夫链蒙特卡罗方法的统计过程调整技术研究[J].计算机集成制造系统,2007,13(6):1210-1217. 被引量:5
  • 5Hengjian CUI Xiuhong GAO.QUADRATIC ADMISSIBLE ESTIMATE OF COVARIANCE IN PSEUDO-ELLIPTICAL CONTOURED DISTRIBUTION[J].Journal of Systems Science & Complexity,2006,19(2):236-255. 被引量:1
  • 6WU C C, TANG G R. Tolerance design for products with asymmetricquality losses [J]. International Journal of Production Research, 1998,36(9) : 2592-2541.
  • 7MAGHSOODLOO S, LI M C. Optimal asymmetric tolerance design [J]. IIE Transactions,2000, 32(12):1127-1137.
  • 8MOORHEAD P R, WU C F J. Cost-driven parameter design [J]. Teehnometries, 1998,40(2) : 111-119.
  • 9GELMAN A, CARLIN J B, ta analysis [M]. Atlanta, 2003. STERN H S,et al. Bayesian data. , USA: Chapman &Hall,

二级参考文献19

  • 1HuHongtao JingZhongliang LiAnping HuShiqiang TianHongwei.Target tracking in glint noise using a MCMC particle filter[J].Journal of Systems Engineering and Electronics,2005,16(2):305-309. 被引量:5
  • 2GRUBBS F E.An optimum procedure for setting machines or adjusting processes[J].Industrial Quality Control,1983,15(4):186-189.
  • 3CASTILLO E D.A note on two process adjustment models[J].Quality and Reliability Engineering International,1998,14(1):23-28.
  • 4SACHS E,HU A,INGOLFSSON A.Run by run process control:combining SPC and feedback control[J].IEEE Transactions on Semiconductor Manufacturing,1995,8 (1):26-43.
  • 5CARLIN B,SIDHARTHA C.Bayesian model choice through Markov chain Monte Carlo[J].Journal of the Royal Statistical Association (Series B),1995,57(3):473-484.
  • 6PEREZ C J,MARTIN J,RUFO M J.Sensitivity estimations for Bayesian inference models solved by MCMC methods[J].Reliability Engineering & System Safety,2006,91 (10):1310-1314.
  • 7GELFAND E A,SMITH F M A.Sampling-based approaches to calculating marginal densities[J].Journal of the American Statistical Association,1990,85(410):398-409.
  • 8MOSTAFA S M,AHMAD R.Empirical Bayes quadratic estimators of variance components in normal linear models[J].Statistics,1986,17(3):337-348.
  • 9SPIEGELHALTER D J,THOMAS A,BEST N G,et al.BUGS:Bayesian inference using Gibbs sampling.user manual Version 1.4[M].Cambridge,Mass.,USA:Medical Research Council Biostatistics Unit,2003.
  • 10GELFAND A E,HILLS S E,RAEINE-POON A,et al.Illtistration of Bayesian inference in normal data models using Gibbs sampling[J].Journal of the American Statistical Association,1990,85(412):972-985.

共引文献4

同被引文献27

  • 1苗瑞,孙小明,李树刚,杨东.基于小批量生产的统计过程质量控制研究[J].计算机集成制造系统,2005,11(11):1633-1635. 被引量:27
  • 2杨世元,吴德会,苏海涛.基于小批量制造过程的动态质量控制限及其简便计算方法[J].中国机械工程,2006,17(14):1476-1479. 被引量:12
  • 3Renolds M R, Stoumbos Z G. Comparisons of Some Exponentially Weighted Moving Average Control Charts for Monitoring the Process Mean and Variance[J].Technometrics, 2006,48. 550-567.
  • 4Shu L J,Jiang W, Wu S J. A One--sided EWMA Control Chart for Monitoring Process Means[J]. Communication in Statistics:Simulation and Compu- tation, 2007,36 : 901-920.
  • 5Zhang J,Zou C,Wang Z. A Control Chart Based on Likelihood Ratio Test for Monitoring Process Mean and Variability[J].Quality and Reliability Engineering International, 2010,26 63-73.
  • 6Marcellus R L. Bayesian Monitoring to Detect a Shift in Process Mean[J]. Quality and Reliability Engineeiing International, 2008,24 : 303-313.
  • 7Pan R. Statistical Process Adjustment Methods for Quality Control in Short--run Manufacturing [D].Pennsylvania: The Pennsylvania State University, 2002.
  • 8Triantafyllopoulos K, Godolphin J D, Godolphin E J. Process in the Microelectronic Industry by State Space Modeling[J]. Quality and Reliability Engineering International, 2005,21 (5) 465-475.
  • 9Montgomery D C. Introduction to Statistical Quality Control[M]. New York: John Wiley and Sons, 1997.
  • 10弗兰克·M·格里纳著,何桢译.质量策划与分析(第4版)[M].北京:中国人民大学出版社,2005:415.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部