期刊文献+

四针氧化锌制备及其场致发射特性 被引量:3

Synthesis of Tetrapod-like Zinc Oxide and Its Field Emission Characteristic
下载PDF
导出
摘要 采用了VS(Vapor-Solid)的方法制备了四针状ZnO,以此作为场致电子发射的冷阴极材料。并对材料进行了扫描电镜(SEM)和X射线粉末衍射(XRD)测试分析,揭示其表面形态和晶体结构。同时将阴极与印刷有荧光粉的阳极板组装成二极管结构场致发射显示屏,并进行了场致发射特性实验。该二极管结构的开启电压为3.6V/μm,其阈值电压为6.6V/μm,相应的电流密度为0.2mA/cm2,并且具有稳定的电流密度和均匀的显示效果。实验证明ZnO是一种优良的场致发射冷阴极材料,具有广阔的应用前景。 Zinc oxide is a Ⅱ-Ⅳ compound semiconductor with a direct wide bandgap (3.37 eV) and large exciton binding energy (60 meV). Several methods have been reported for the synthesis of one-dimensional (1D) ZnO nanostructures such as nanowires, nanorods, and nanobelts. Comparing to carbon-based materials, the ZnO nanostructure has a unique advantage. Using carbon-based materials, we have to encounter a strict requirement on vacuum. If not, it will be oxidized with the growth of vacuum and temperature. ZnO nanostructure would last longer under the same vacuum for carbon-based FE device. The tetrapod-like zinc oxide synthesized by Vapor-Solid method was applied to the field emission display as the cold cathode material. Our ZnO nanostructures were prepared by oxidizing Zn vapor in a horizontal tube furnace. The source material was Zn (99.9%) powder, which was loaded in a horizontal quartz tube placed in the constant temperature zone of the tube furnace. Ar at a flow rate of 300 sccm was used first to purge the reactor for 30 min. Then the furnace was heated to 850 ℃ at a heating rate of 25 ℃/min and kept at 850 ℃ for 30 min at a flow rate of 70 sccm Ar and 40 sccm 02. Finally, after cooling down the furnace naturally to room temperature under the protection of an Ar flow, the fluffy, white ZnO was collected from the quartz tube. We introduced SEM and XRD to show the morphology and structure of the tetrapod-like zinc oxide. The field emission characteristics are evaluated by the simplified Fowler-Nordheim (FN) equation J=A(β^2V^2/φd^2^)exp(-Bφ^3/2d/βV)where J is the current density, A and B are constants with values of A =1.56×10^-10A·V^-2·eV,B=6.8×10^3V·eV^-3/2·μm^-1,respectively,β is a field enhancement factor which quantifies the field enhancement due to microstructure roughness,φ is the work function of ZnO(5.3 eV),d is a distance between the anode and cathode and V is the applied voltage. The characteristic of the diode structure was researched and the anode display image was presented. The turn-on field was 3.6 V ·μm ^-1 and the threshold field was 6.6 V/l^m with the current density of 0.2 mA · cm ^-2. From the stable field emission and uniform display image, we can conclude that the tetrapod-like zinc oxide is an excellent cold cathode material for field emission and has a potential application in the vacuum nano-electronics.
出处 《发光学报》 EI CAS CSCD 北大核心 2008年第3期542-546,共5页 Chinese Journal of Luminescence
基金 国家"973"计划(2003CB314702 2003CB314706) 教育部博士点基金(20070286054) 新世纪优秀人才计划(NCET-04-0473 NCET-05-0466) 高等学校创新引智计划(B07027)资助项目
关键词 四针状ZnO 场致发射 纳米材料 平板显示器 tetrapod-like zinc oxide field emission nano-material flat panel display
  • 相关文献

参考文献13

  • 1李俊涛,雷威,张晓兵,王琦龙,李玲珍,郑刚.纳米碳管阴极的场致发射显示研究[J].东南大学学报(自然科学版),2003,33(2):138-140. 被引量:6
  • 2Sumio Iijima. Helical microtubules of graphitic carbon [J]. Nature, 1991,354(6348) :56-58.
  • 3Xu N S, Deng S Z, Chen J. Nanomaterials for field electron emission: preparation, characterization and application [ J]. Ultramicroscopy, 2003, 95 : 19-28.
  • 4Dean K A, Chalamala B R. The environmental stability of field emission from single-walled carbon nanotubes [J]. Appl. Phys. Lett., 1999, 75(19) :3017-3019.
  • 5Joeoong Hahn, Sung Mi Jung, et al. Fabrication of clean carbon nanotube field emitters [ J ]. Appl. Phys. Lett. , 2006,88(11) :113101-1-3.
  • 6王莉莉,孙卓,陈婷.生长温度对碳纳米管阴极场发射性能的影响[J].发光学报,2006,27(1):123-128. 被引量:10
  • 7樊志琴,闫书霞,姚宁,鲁占灵,杨仕娥,马丙现,张兵临.沉积工艺参数对碳纳米管薄膜场发射性能的影响[J].发光学报,2006,27(1):129-133. 被引量:10
  • 8Xu N S, Ejaz Huq S. Novel cold cathode materials and applications [J]. Materials Science and Engineering R, 2005, 48 (2-5) :47-189.
  • 9Wan Q, Yu K, Wang T H, et ctl. Low-field electron emission from tetrapod-like ZnO nanostructures synthesized by rapid evaporation [J]. Appl. Phys. Lett. , 2003, 83(11):2253-2255.
  • 10王维彪,夏玉学,陈明,徐迈.碳纳米带的合成及场致电子发射[J].液晶与显示,2004,19(6):411-414. 被引量:4

二级参考文献44

  • 1解滨,陈波.基于有限元参数化设计的碳纳米管的场致增强因子计算[J].发光学报,2004,25(4):446-448. 被引量:6
  • 2樊志琴,张兵临,姚宁,鲁占灵,杨仕娥,马丙现,邓记才.刻线镍膜上沉积的碳纳米管场发射特性[J].发光学报,2004,25(6):743-747. 被引量:10
  • 3朱长纯,刘兴辉.碳纳米管场发射显示器的研究进展[J].发光学报,2005,26(5):557-563. 被引量:18
  • 4[1]Spindt C A. A thin film field emission cathode [J]. J Appl Phys,1968, 39:3504-3505.
  • 5[2]Iijima S. Helical microtubes of graphitic carbon [J]. Nature, 1991, 354(6?348):56-58.
  • 6[3]Spindt C A, Brodie I, Humphrey L, et al. Physical properties of thin film field emission cathode with molybdenum cones[J]. J Appl Phys, 1976, 47(2):5248-5263.
  • 7[4]Modinos A. Field, thermionic, and secondary electron emission spectroscopy [M]. New York: Plenum Press, 1984.282-290.
  • 8[5]Langer L, Bayot V, Grivei E, et al. Quantum transport in a multiwalled carbon nanotube [J]. Phys Rew Lett, 1996,76(3):479-482.
  • 9[7]Wang Q H, Setlur A A, Lauerhaas J M, et al. A nanotube-based field-emission flat panel display [J]. Appl Phys Lett, 1998, 72(22):2912-2913.
  • 10Sun Z,Chen J S,Li Y J,et al.Phase transformation of diamond film during the electron field emission[J].Appl.Surf.Sci.,2001,173:282-289.

共引文献19

同被引文献58

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部