期刊文献+

Navier-Cauchy 方程在边界元法中的应用

An Application of Navier Cauchy Equation to the Boundary Element Method
下载PDF
导出
摘要 用Navier_Cauchy方程,通过动力互等定理推导边界量的约束方程边界积分方程,对时间和物体表面进行离散,即可应用于工程实际,为边界元法在动力学问题中的应用打好基础,并把三维问题基本解应用于二维问题,大大简化边界元法的奇导积分。 Through applying Navier cauchy equation, and the theorem on dynamic mutual equality, the paper derives the constrained equation for finding the border amount, namely, the border integration equation, makes the time and the surface of the object discrete, and then it can be used in the practical engineering, which can lay a good foundation for the use of the boundary element method in the problems of dynamics. Furthermore, the basic solutions to the problems on three dimensions can be applied to the problems on two dimensions, thus greatly simplifying the integration of strangeness resulted from the use of boundary element method.
出处 《辽宁工学院学报》 1997年第3期33-35,共3页 Journal of Liaoning Institute of Technology(Natural Science Edition)
关键词 边界元法 动力互等定理 N-C方程 Navier Cauchy equation boundary element method theorem on dynamic mutual equality
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部